The Role of Carbon in the Formation of Intrinsic Point Defects and Hydrogen Migration in α-Al2O3-Based Tritium Permeation Barriers
Corresponding Author
Xin Xiang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorFeilong Yang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorLi Hu
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorGuikai Zhang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorChang'an Chen
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorCorresponding Author
Xin Xiang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorFeilong Yang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorLi Hu
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorGuikai Zhang
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorChang'an Chen
Institute of Materials, China Academy of Engineering Physics, Jiangyou, 621908 P. R. China
Search for more papers by this authorAbstract
The impurity effect is one of the major concerns for α-Al2O3-based tritium permeation barriers (TPBs). The effect of carbon, a common impurity element in α-Al2O3, on the formation of intrinsic point defects and hydrogen migration behaviors is investigated by first-principles calculations. It is found that carbon has a significant influence on the existing form, charge state, and relative stability in α-Al2O3. In view of the hydrogen migration, carbon is not beneficial for the hydrogen permeation resistance in α-Al2O3-based TPBs because carbon can remarkably reduce the hydrogen migration barrier in α-Al2O3.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1 X. Xiang, X. Wang, G. Zhang, T. Tang, X. Lai, Int. J. Hydrogen Energy 2015, 40, 3697.
- 2 H. Li, Z. Ke, L. Xue, Y. Yan, Fusion Eng. Des. 2017, 125, 567.
- 3 H. Li, Z. Ke, J. Li, L. Xue, Y. Yan, J. Eur. Ceram. Soc. 2018, 38, 1871.
- 4 G. Zhang, X. Wang, F. Yang, Y. Shi, J. Song, X. Lai, Int. J. Hydrogen Energy 2013, 38, 7550.
- 5 D. Levchuk, F. Koch, H. Maier, H. Bolt, J. Nucl. Mater. 2004, 328, 103.
- 6 K. P. D. Lagerlöf, R. W. Grimes, Acta Mater. 1998, 46, 5689.
- 7 N. D. M. Hine, K. Frensch, W. M. C. Foulkes, M. W. Finnis, Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 024112.
- 8 N. D. M. Hine, K. Frensch, M. W. Finnis, W. M. C. Foulkes, A. H. Heuer, presented at Quantum Monte Carlo in the Apuan Alps V, The Towler Institute, Vallico Sotto, Tuscany, Italy, July–Aug 2009.
- 9 X. Xiang, G. Zhang, F. Yang, X. Peng, T. Tang, Y. Shi, X. Wang, Phys. Chem. Chem. Phys. 2016, 18, 6734.
- 10 X. Xiang, G. Zhang, T. Tang, J. Mater. Sci. 2018, 53, 11194.
- 11 X. Xiang, G. Zhang, F. Yang, X. Wang, T. Tang, Y. Shi, J. Phys. Chem. C 2016, 120, 9535.
- 12 X. Xiang, L. Zhu, F. Yang, L. Hu, G. Zhang, J. Nucl. Mater. 2020, 542, 152494.
- 13 M. Jiang, B. Nie, Z. Yang, M. Ni, Z. Chen, J. Nucl. Mater. 2020, 533, 152102.
- 14 A. Bertrand, J. Carreaud, G. Delaizir, J. R. Duclere, M. Colas, J. Cornette, M. Vandenhende, V. Couderc, P. Thomas, J. Am. Ceram. Soc. 2014, 97, 163.
- 15 Z. Chen, W. Yan, S. Schafföner, Y. Dai, Q. Wang, G. Li, J. Am. Ceram. Soc. 2020, 103, 4713.
- 16 M. Michálek, M. Michálková, G. Blugan, J. Kuebler, J. Eur. Ceram. Soc. 2018, 38, 193.
- 17 J. M. Kalita, M. L. Chithambo, Radiat. Prot. Dosim. 2017, 177, 261.
- 18 L. Ao, Y. Yuan, Y. Tian, J. L. Nie, H. Y. Xiao, H. Chen, X. Xiang, X. T. Zu, Comput. Mater. Sci. 2015, 110, 368.
- 19 V. G. Il'ves, S. Y. Sokovnin, M. G. Zuev, J. Lumin. 2016, 179, 474.
- 20 R. Román, M. T. Hernández, A. Ibarra, R. Vila, J. Mollá, P. Martín, M. González, Acta Mater. 2006, 54, 2777.
- 21 N. A. Yahya, R. I. Todd, J. Eur. Ceram. Soc. 2012, 32, 4003.
- 22 B. Delley, J. Chem. Phys. 2000, 113, 7756.
- 23 G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758.
- 24 J. A. White, D. M. Bird, Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 4954.
- 25 B. Delley, J. Chem. Phys. 1990, 92, 508.
- 26 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 77, 3865.
- 27 H. J. Monkhorst, J. D. Pack, Phys. Rev. B: Condens. Matter Mater. Phys. 1976, 13, 5188.
- 28
K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68, 085110.
10.1103/PhysRevB.68.085110 Google Scholar
- 29 J. B. Varley, H. Peelaers, A. Janotti, C. G. Van de Walle, J. Phys.: Condens. Matter 2011, 23, 334212.
- 30 G. Zhang, Y. Lu, X. Wang, Phys. Chem. Chem. Phys. 2014, 16, 17523.
- 31 Q. Y. Huang, Y. C. Wu, J. G. Li, F. R. Wan, J. L. Chen, G. N. Luo, X. Liu, J. M. Chen, Z. Y. Xu, X. G. Zhou, X. Ju, Y. Y. Shan, J. N. Yu, S. Y. Zhu, P. Y. Zhang, J. F. Yang, X. J. Chen, S. M. Dong, J. Nucl. Mater. 2009, 386–388, 400.
- 32 S. B. Zhang, S. H. Wei, A. Zunger, H. Katayama-Yoshida, Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 9642.
- 33
T. Kurita, K. Uchida, A. Oshiyama, Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 155319.
10.1103/PhysRevB.82.155319 Google Scholar
- 34 G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.
- 35 X. B. Yang, H. J. Li, Q. Y. Bi, Y. Cheng, Q. Tang, J. Xu, J. Appl. Phys. 2008, 104, 123112.
- 36 J. Zhu, K. P. Muthe, R. Pandey, J. Phys. Chem. Solids 2014, 75, 379.
- 37 X. Xiang, G. Zhang, X. Wang, T. Tang, Y. Shi, Phys. Chem. Chem. Phys. 2015, 17, 29134.
- 38 C. Kílíc, A. Zunger, Phys. Rev. Lett. 2002, 88, 095501.