The Effect of Hydrostatic Pressure on the Martensitic Transformation and Magnetocaloric Effect of MnNi0.88GeV0.12 Alloy
Chen Li
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorGuoliang Ma
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorMengru Chen
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorShuotong Zong
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorYan Zhang
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorShulei Zhao
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorCorresponding Author
Fenghua Chen
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorYuanYuan Gong
MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorChen Li
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorGuoliang Ma
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorMengru Chen
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorShuotong Zong
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorYan Zhang
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorShulei Zhao
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorCorresponding Author
Fenghua Chen
The Key Laboratory of Magnetic and Electric Functional Materials and Applications of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024 P. R. China
Search for more papers by this authorYuanYuan Gong
MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorAbstract
The effect of hydrostatic pressure on the martensitic transformation and magnetocaloric properties of MnNi0.88GeV0.12 alloy is studied in detail. X-ray diffraction at room temperature shows that the alloy has a single hexagonal Ni2In-type structure. The phase transition temperature moves to the low-temperature region with the increase in hydrostatic pressure. Under the external magnetic field of 15 kOe, the hydrostatic pressure driving rates and are 60.25 and 65.25 K GPa−1, respectively, which indicate that the applied pressure expands the working temperature range of magnetic refrigeration. A magnetic entropy change ΔS of −4.8 J kg−1 K−1 is obtained in the external magnetic field of 15 kOe under ambient pressure. The peak value of |ΔS| is increased to 5.6 J kg−1 K−1 under hydrostatic pressure, which is closely related to the structural change of the alloy.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1 K. Mandal, P. Dutta, P. Dasgupta, S. Pramanick, S. Chatterjee, J. Phys. D: Appl. Phys. 2018, 51, 225004.
- 2 N. R. Ram, M. Prakash, U. Naresh, N. S. Kumar, T. S. Sarmash, T. Subbarao, R. J. Kumar, G. R. Kumar, K. C. B. Naidu, J. Supercond. Novel Magn. 2018, 31, 1971.
- 3 V. K. Pecharsky, K. A. Gschneidner, Appl. Phys. Lett. 1997, 70, 3299.
- 4 Y. Shao, J. Liu, M. Zhang, A. Yan, K. P. Skokov, D. Y. Karpenkov, O. Gutfleisch, Acta Mater. 2017, 125, 506.
- 5 S. Chatterjee, S. Giri, S. Majumdar, J. Appl. Phys. 2010, 107, 113909.
- 6 P. Dutta, D. Das, S. Chatterjee, S. Pramanick, S. Majumdar, J. Phys. D: Appl. Phys. 2016, 49, 125001.
- 7 A. Bhattacharyya, S. Chatterjee, S. Giri, S. Majumdar, Eur. Phys. J. B 2009, 70, 347.
- 8 A. Tekgül, Intermetallics 2021, 129, 107033.
- 9 V. Sokolovskiy, M. Zagrebin, V. D. Buchelnikov, J. Magn. Magn. Mater. 2018, 459, 295.
- 10 F. Chen, Q. Huang, Z. Jiang, M. Zhang, X. Xu, Q. Zhang, J. Zhao, Mater. Lett. 2015, 160, 428.
- 11 K. Koyama, M. Sakai, T. Kanomata, K. Watanabe, Jpn. J. Appl. Phys., Part 1 2004, 43, 8036.
- 12 A. Barcza, Z. Gercsi, K. S. Knight, K. G. Sandeman, Phys. Rev. Lett. 2010, 104, 247202.
- 13 E. K. Liu, W. Zhu, L. Feng, J. L. Chen, W. H. Wang, G. H. Wu, H. Y. Liu, F. B. Meng, H. Z. Luo, Y. X. Li, Europhys. Lett. 2010, 91, 17003.
- 14 S. C. Ma, Y. Su, M. Yang, F. Yang, Y. L. Huang, K. Liu, L. Zhang, Z. C. Zhong, J. Alloys Compd. 2015, 629, 322.
- 15 S. C. Das, K. Mandal, P. Dutta, S. Pramanick, S. Chatterjee, J. Phys. D: Appl. Phys. 2018, 51, 065002.
- 16 S. C. Ma, D. Hou, F. Yang, Y. L. Huang, G. Song, Z. C. Zhong, D. H. Wang, Y. W. Du, Appl. Phys. Lett. 2014, 104, 202412.
- 17 K. Xu, Z. Li, E. Liu, H. Zhou, Y. Zhang, C. Jing, Sci. Rep. 2017, 7, 41675.
- 18 Y. Li, Z. Y. Wei, H. G. Zhang, E. K. Liu, H. Z. Luo, G. D. Liu, X. K. Xi, S. G. Wang, W. H. Wang, M. Yue, G. H. Wu, X. X. Zhang, APL Mater. 2016, 4, 071101.
- 19 E. Liu, W. Wang, L. Feng, W. Zhu, G. Li, J. Chen, H. Zhang, G. Wu, C. Jiang, H. Xu, F. de Boer, Nat. Commun. 2012, 3, 873.
- 20 A. Quetz, T. Samanta, I. Dubenko, M. J. Kangas, J. Y. Chan, S. Stadler, N. Ali, J. Appl. Phys. 2013, 114, 153909.
- 21 P. Dutta, S. Pramanick, V. Singh, D. T. Major, D. Das, S. Chatterjee, Phys. Rev. B 2016, 93, 134408.
- 22 Y. Kuang, B. Yang, H. Xu, X. Hao, Z. Li, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, J. Alloys Compd. 2020, 835, 155313.
- 23 R. Roy, S. K. Adhikari, J. Sannigrahi, K. Mandal, S. C. Das, P. Dutta, S. Pramanick, D. Khalyavin, D. T. Adroja, S. Chatterjee, Phys. Rev. B 2021, 104, 214405.
- 24 S. C. Das, J. Sannigrahi, P. Dutta, S. Pramanick, D. Khalyavin, D. T. Adroja, S. Chatterjee, Phys. Rev. B 2021, 103, 094422.
- 25 Y. Kuang, J. Qi, H. Xu, B. Yang, B. Li, Z. Li, H. Yan, Y. Zhang, C. Esling, X. Zhao, L. Zuo, Scr. Mater. 2021, 200, 113908.
- 26 S. Pandey, J.-H. Chen, A. U. Saleheen, I. Dubenko, A. Aryal, P. W. Adams, S. Stadler, N. Ali, J. Magn. Magn. Mater. 2018, 463, 19.
- 27 S. C. Ma, Q. G. S. Yang, K. Yu, X. Q. Han, K. Liu, Y. Song, L. L. Zhang, Q. Z. Jiang, M. L. Zhong, R. H. Liu, L. Wang, J. J. Li, Z. C. Zhong, J. Alloys Compd. 2017, 729, 1190.
- 28 X. Zhao, M. Tong, C. W. Shih, W. C. Chang, W. Liu, Z. Zhang, IEEE Trans. Magn. 2014, 50, 2504904.
- 29 G. Daniel-Perez, J. L. Sanchez Llamazares, A. Quintana-Nedelcos, P. Alvarez-Alonso, R. Varga, V. Chernenko, J. Appl. Phys. 2014, 115, 17A920.
- 30 A. Taubel, T. Gottschall, M. Fries, T. Faske, K. P. Skokov, O. Gutfleisch, J. Phys. D: Appl. Phys. 2017, 50, 464005.
- 31 L. Caron, N. T. Trung, E. Brück, Phys. Rev. B 2011, 84, 020414.
- 32 Q. Zeng, J. Shen, E. Liu, X. Xi, W. Wang, G. Wu, X. Zhang, Chin. Phys. Lett. 2020, 37, 076101.
- 33 S. Anzai, K. Ozawa, Phys. Rev. B 1978, 18, 2173.
- 34 S. Nizioł, A. Zięba, R. Zach, M. Baj, L. Dmowski, J. Magn. Magn. Mater. 1983, 38, 205.
- 35 H. Wang, C. Xu, L. Wang, T. Wang, Z. Han, Y. Fang, L. Zhang, C. Zhang, B. Qian, X. Jiang, J. Alloys Compd. 2020, 837, 155280.
- 36 N. Ul Hassan, I. A. Shah, T. Khan, J. Liu, Y. Gong, X. Miao, F. Xu, Chin. Phys. B 2018, 27, 037504.
- 37 W. Shi, F. Chen, J. Liu, H. Xuan, R. Zhang, Q. Zhang, Y. Jiang, M. Zhang, Solid State Commun. 2020, 308, 113821.
- 38 Z.-Y. Wei, E.-K. Liu, Y. Li, G.-Z. Xu, X.-M. Zhang, G.-D. Liu, X.-K. Xi, H.-W. Zhang, W.-H. Wang, G.-H. Wu, X.-X. Zhang, Adv. Electron. Mater. 2015, 1, 1500076.
- 39 S. Gama, A. A. Coelho, A. de Campos, A. M. G. Carvalho, F. C. G. Gandra, P. J. von Ranke, N. A. de Oliveira, Phys. Rev. Lett. 2004, 93, 237202.
- 40 J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, O. Gutfleisch, Nat. Mater. 2012, 11, 620.