Supercapacitor performance of binder-free buckypapers from multiwall carbon nanotubes synthesized at different temperatures
K. M. Popov
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorV. E. Arkhipov
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorA. G. Kurenya
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorE. O. Fedorovskaya
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorK. A. Kovalenko
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorA. V. Okotrub
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorCorresponding Author
L. G. Bulusheva
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Corresponding author: e-mail [email protected], Phone: +7 383 3305352, Fax: +7 383 3309489
Search for more papers by this authorK. M. Popov
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorV. E. Arkhipov
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorA. G. Kurenya
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorE. O. Fedorovskaya
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorK. A. Kovalenko
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Search for more papers by this authorA. V. Okotrub
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Search for more papers by this authorCorresponding Author
L. G. Bulusheva
Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk, Russia
Corresponding author: e-mail [email protected], Phone: +7 383 3305352, Fax: +7 383 3309489
Search for more papers by this authorAbstract
Multiwall carbon nanotubes (MWCNTs) have been synthesized by aerosol-assisted catalytic chemical vapor deposition method from a 2% ferrocene solution in toluene at temperatures of 720 and 800 °C. After an oxidation by a HNO3/H2SO4 mixture, MWCNTs were dispersed in water and deposited in form of buckypapers with a thickness of ∼150 μm. The obtained materials were used as working electrodes of supercapacitors without adding of binder. The electrode from MWCNTs synthesized at lower temperature showed the larger capacitance in 1 M H2SO4 and 6 M KOH electrolytes, especially at low scan rates. An increase of double-layer capacitance was due to larger specific surface and microporosity of the material; a gain in pseudocapacitance was attributed to larger quantity of oxygenated groups developed on the defective surface of nanotubes. The electrode showed a good cyclic performance during a repetitive charge/discharge test.
A larger specific capacitance of MWCNTs synthesized at 720 °C is related with etching of nanotube tips and higher oxygenation of nanotube surface as the result of binder-free buckypaper electrode preparation.
References
- 1 Md. H.-O. Rashid, S. Q. T. Pham, L. J. Sweetman, L. J. Alcock, A. Wise, L. D. Nghiem, G. Triani, M. in het Panhuis, and S. F. Ralph, J. Membr. Sci. 456, 175 ( 2014).
- 2 H. Papa, M. Gaillard, L. Gonzalez, and J. Chatterjee, Biosensors 4, 449 ( 2014).
- 3 E. O. Fedorovskaya, E. K. Apartsin, D. S. Novopashina, A. G. Venyaminova, A. G. Kurenya, L. G. Bulusheva, and A. V. Okotrub, Mater. Design 100, 67 ( 2016).
- 4 L. Hussein, S. Rubenwolf, F. von Stetten, G. Urban, R. Zengerle, M. Krueger, and S. Kerzenmacher, Biosen. Bioelectron. 26, 4133 ( 2011).
- 5 L. Hussein, K. Jensen, S. Alia, C. Contreras, Y. Yan, G. Urban, and M. Krüger, Electrochim. Acta 56, 7659 ( 2011).
- 6 J. G. Park, J. Louis, Q. Cheng, J. Bao, J. Smithyman, R. Liang, B. Wang, C. Zhang, J. S. Brooks, L. Kramer, P. Fanchasis, and D. Dorough, Nanotechnology 20, 1 ( 2009).
- 7 X. Fu, C. Zhang, T. Liu, R. Liang, and B. Wang, Nanotechnology 21, 235701 ( 2010).
- 8 L. G. Bulusheva, E. O. Fedorovskaya, A. G. Kurenya, and A. V. Okotrub, Phys. Status Solidi B 250, 2586 ( 2013).
- 9
C. Lecoeur,
B. Daffos,
R. Lin,
L. Divay,
P. Le Barny,
M. P. Thi,
P.-L. Taberna, and
P. Simon,
Mater. Renew. Sustain. Energy
2, 1 (
2013).
10.1007/s40243-013-0013-2 Google Scholar
- 10 L. G. Bulusheva, V. E. Arkhipov, E. O. Fedorovskaya, S. Zhang, A. G. Kurenya, M. A. Kanygin, I. P. Asanov, A. R. Tsygankova, X. Chen, H. Song, and A. V. Okotrub, J. Power Sources 311, 42 ( 2016).
- 11 C. Meng, C. Liu, and S. Fan, Electrochem. Commun. 11, 186 ( 2009).
- 12 E. O. Fedorovskaya, A. V. Okotrub, and L. G. Bulusheva, Fullerenes Nanotubes Carbon Nanostruct. 20, 519 ( 2012).
- 13 A. V. Okotrub, I. P. Asanov, P. S. Galkin, L. G. Bulusheva, G. N. Chekhova, A. G. Kurenya, and Y. V. Shubin, Polym. Sci. B 52, 101 ( 2010).
- 14 Q. H. Do, C. Zeng, C. Zhang, B. Wang, and J. Zheng, Nanotechnology 22, 365402 ( 2011).
- 15 C. Zhou, S. Kumar, C. D. Doyle, and J. M. Tour, Chem. Mater. 17, 1997 ( 2005).
- 16 T. Liu, T. V. Sreekumar, S. Kumar, R. H. Hauge, and R. E. Smalley, Carbon 41, 2440 ( 2003).
- 17 B. Brown, B. Swain, J. Hiltwine, D. B. Brooks, and Z. Zhou, J. Power Sources 272, 979 ( 2014).
- 18 C. Zhou and S. Kumar, Polymer Prepr. 47, 376 ( 2006).
- 19 A. G. Kurenya, L. G. Bulusheva, I. P. Asanov, O. V. Sedelnikova, and A. V. Okotrub, Phys. Status Solidi B 252, 2524 ( 2015).
- 20 A. G. Kudashov, A. G. Kurenya, A. V. Okotrub, A. V. Gusel'nikov, V. D. Danilovich, and L. G. Bulusheva, Tech. Phys. 52, 1627 ( 2007).
- 21 E. V. Lobiak, E. V. Shlyakhova, L. G. Bulusheva, P. E. Plyusnin, Yu. V. Shubin, and A. V. Okotrub, J. Alloys Compd. 621, 351 ( 2015).
- 22 Y. Wang, D. C. Alsmeyer, and R. L. McCreery, Chem. Mater. 2, 557 ( 1990).
- 23 E. V. Shlyakhova, L. G. Bulusheva, M. A. Kanygin, P. E. Plyusnin, K. A. Kovalenko, B. V. Senkovskiy, and A. V. Okotrub, Phys. Status Solidi B 251, 2607 ( 2014).
- 24 C. Du, J. Yef, and N. Pan, Nanotechnoloty 16, 350 ( 2005).
- 25 Z. Lin, Y. Liu, Y. Yao, O. J. Hildreth, Z. Li, K. Moon, and C.-P. Wong, J. Phys. Chem. C 115, 7120 ( 2011).
- 26 Y. J. Oh, J. J. Yoo, Y. I. Kim, J. K. Yoon, H. N. Yoon, Y.-H. Kim, and S. B. Park, Electrochim. Acta 116, 118 ( 2014).
- 27 J. L. Lyon and K. J. Stevenson, Langmuir 23, 11311 ( 2007).
- 28 E. O. Fedorovskaya, L. G. Bulusheva, A. G. Kurenya, I. P. Asanov, N. A. Rudina, K. O. Funtov, I. S. Lyubutin, and A. V. Okotrub, Electrochim. Acta 139, 165 ( 2014).
- 29 E. O. Fedorovskaya, L. G. Bulusheva, A. G. Kurenya, I. P. Asanov, and A. V. Okotrub, Russ. J. Electrochem. 52 ( 2016).
- 30 K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim, and Y. H. Lee, Adv. Mater. 13, 497 ( 2001).