Compensation effect and magnetostriction in CoCr2−xFexO4
Hong-guo Zhang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorCorresponding Author
Weng-hong Wang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Phone: 086-010-8264 9247, Fax: 086-010-8264 9485Search for more papers by this authorEn-ke Liu
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorXiao-dan Tang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorGui-jiang Li
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorHong-wei Zhang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorGuang-heng Wu
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorHong-guo Zhang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorCorresponding Author
Weng-hong Wang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Phone: 086-010-8264 9247, Fax: 086-010-8264 9485Search for more papers by this authorEn-ke Liu
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorXiao-dan Tang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorGui-jiang Li
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorHong-wei Zhang
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorGuang-heng Wu
State Key Laboratory of Magnetism, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Search for more papers by this authorAbstract
The magnetic compensation and magnetostriction properties in Fe-doped CoCr2O4 samples have been investigated. Structural and magnetic measurements imply that the doped Fe3+ ions initially occupy the B1 (Cr) sites when x < 0.1, and then mainly take the A (Co) sites. This behaviour results in a role conversion of magnetic contributors and a composition compensation between two competitively magnetic sublattices at x = 0.1. Temperature-dependent compensation has also been found in the samples with x = 0.1–0.22, with the compensation temperature in the range of 40–104 K. The Fe3+ doping also modulates the exchange interaction of the system and prevents the formation of long-range conical order of spins. The magnetoelectric transition temperature at 23 K in CoCr2O4 is shifted to lower temperature by increasing the dopants. The magnetostriction effect in this system has been observed for the first time. The strain has a maximum value of about 280 ppm at x = 0.4. The magnetostriction is consistent with the behaviour of the two magnetic compensations.
References
- 1 M. Fiebig, J. Phys. D, Appl. Phys. 38, R123 (2005).
- 2 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
- 3 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
- 4 N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
- 5 S. W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
- 6 T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430, 541 (2004).
- 7 K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, Phys. Rev. Lett. 97, 097203 (2006).
- 8 T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005).
- 9 T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73, 220401 (2006).
- 10 S. Seki, Y. Onose, and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).
- 11 N. Menyuk, K. Dwight, and A. Wold, J. Phys. France 25, 528 (1964).
- 12 Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett. 96, 207204 (2006).
- 13 K. Tomiyasu, J. Fukunaga, and H. Suzuki, Phys. Rev. B 70, 214434 (2004).
- 14 T. H. Arima, Y. Yamasaki, T. Goto, S. Iguchi, K. Ohgushi, S. Miyasaka, and Y. Tokura, J. Phys. Soc. Jpn. 76, 023602 (2007).
- 15 L. J. Chang, D. J. Huang, W. H. Li, S. W. Cheong, W. Ratcliff, and J. W. Lynn, J. Phys.: Condens. Matter 21, 456008 (2009).
- 16 Y. J. Choi, J. Okamoto, D. J. Huang, K. S. Chao, H. J. Lin, C. T. Chen, M. van Veenendaal, T. A. Kaplan, and S. W. Cheong, Phys. Rev. Lett. 102, 067601 (2009).
- 17 I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Appl. Phys. Lett. 94, 042505 (2009).
- 18 H. Bao, S. Yang, and X. B. Ren, J. Phys.: Conf. Ser. 266, 012001 (2011).
- 19 B. C. Melot, J. E. Drewes, R. Seshadri, E. M. Stoudenmire, and A. P. Ramirez, J. Phys.: Condens. Matter 21, 216007 (2009).
- 20 K. R. Choi, T. Kouh, S. J. Kim, and C. S. Kim, Phys. Status Solidi B 244, 4582 (2007).
- 21 G. Lawes, B. Melot, K. Page, C. Ederer, M. A. Hayward, T. Proffen, and R. Seshadri, Phys. Rev. B 74, 024413 (2006).
- 22 G. D. Dwivedi, K. F. Tseng, C. L. Chan, P. Shahi, J. Lourembam, B. Chatterjee, A. K. Ghosh, H. D. Yang, and S. Chatterjee, Phys. Rev. B 82, 134428 (2010).
- 23 G. A. Sawatzky, F. Van Der Woude, and A. H. Morrish, Phys. Rev. 187, 747 (1969).
- 24 L. A. Grunes, Phys. Rev. B 27, 2111 (1983).
- 25 G. L. Glen and C. G. Dodd, J. Appl. Phys. 39, 5372 (1968).
- 26 M. Belli, A. Scafati, A. Bianconi, S. Mobilio, L. Palladino, A. Reale, and E. Burattini, Solid State Commun. 35, 355 (1980).
- 27 T. Ressler, J. Wienold, R. E. Jentoft, and T. Neisius, J. Catal. 210, 67 (2002).
- 28 H. M. Nguyen, N. V. Dang, P.-Y. Chuang, T. D. Thanh, C.-W. Hu, T.-Y. Chen, V. D. Lam, C.-H. Lee, and L. V. Hong, Appl. Phys. Lett. 99, 202501 (2011).
- 29 D. J. Webb, A. F. Marshall, Z. Sun, T. H. Geballe, and R. M. White, IEEE Trans. Magn. 24, 588 (1988).
- 30 P. D. Kulkarni, S. K. Dhar, A. Provino, P. Manfrinetti, and A. K. Grover, Phys. Rev. B 82, 144411 (2010).
- 31 J. C. Slonczewski, J. Appl. Phys. 32, S253 (1961).