Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition
Mihai E. Vaida
Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
Search for more papers by this authorCorresponding Author
Thorsten M. Bernhardt
Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
Phone: +49 731 50 25455, Fax: +49 731 50 25452Search for more papers by this authorClemens Barth
CINAM-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France
Search for more papers by this authorFriedrich Esch
Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
Search for more papers by this authorUeli Heiz
Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
Search for more papers by this authorUzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
Search for more papers by this authorMihai E. Vaida
Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
Search for more papers by this authorCorresponding Author
Thorsten M. Bernhardt
Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
Phone: +49 731 50 25455, Fax: +49 731 50 25452Search for more papers by this authorClemens Barth
CINAM-CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 09, France
Search for more papers by this authorFriedrich Esch
Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
Search for more papers by this authorUeli Heiz
Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
Search for more papers by this authorUzi Landman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
Search for more papers by this authorAbstract
Ultrathin metal oxide films have attracted considerable interest in recent years as versatile substrate for the design of nanocatalytic model systems. In particular, it has been proposed theoretically and confirmed experimentally that the electronic structure of adsorbates can be influenced by the layer thickness and the stoichiometry, i.e., the type and number of defects, of the oxide film. This has important consequences on the chemical reactivity of the oxide surface itself and of oxide supported metal clusters. It also opens new possibilities to influence and to control chemical reactions occurring at the surface of these systems. The present feature focuses on very recent experiments that illustrate the effects of a proper adjustment of layer thickness and composition of ultrathin MgO(100) films on chemical transformations. On the magnesia surface itself, the photodissociation dynamics of methyl iodide molecules is investigated via femtosecond-laser pump–probe mass spectrometry. Furthermore, the catalytic oxidation of carbon monoxide at mass-selected Au20 clusters deposited on magnesia is explored through temperature programmed reaction measurements. In the latter case, detailed first principles calculations are able to correlate the experimentally observed reactivity with structural dimensionality changes that are induced by the changing thickness and composition of the magnesia support.
References
- 1 V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1996).
- 2 H.-J. Freund, Faraday Discuss. 114, 1 (2000). U. Heiz and W.-D. Schneider, J. Phys. D 33, R85 (2000).
- 3 U. Heiz and U. Landman (eds.), Nanocatalysis (Springer-Verlag, Berlin, 2007).
- 4 S. C. Street, C. Xu, and D. W. Goodman, Annu. Rev. Phys. Chem. 48, 43 (1997).
- 5 H.-J. Freund and D. W. Goodman, Ultrathin Oxide Films, in: Handbook of Heterogeneous Catalysis, Vol. 3, edited by G. Ertl, E. Knözinger, and F. Schüth (Wiley-VCH, Weinheim, 2008), p. 1309.
- 6 S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, and W.-D. Schneider, Phys. Rev. Lett. 87, 276801 (2001).
- 7 S. Schintke and W.-D. Schneider, J. Phys.: Condens. Matter 16, R49 (2004).
- 8 H.-J. Freund and G. Pacchioni, Chem. Soc. Rev. 37, 2224 (2008).
- 9 C. Harding, V. Habibpour, S. Kunz, A. N.-S. Farnbacher, U. Heiz, B. Yoon, and U. Landman, J. Am. Chem. Soc. 131, 538 (2009).
- 10 L. Giordano, F. Cinquini, and G. Pacchioni, Phys. Rev. B 73, 045414 (2005).
- 11 M. E. Vaida, T. Gleitsmann, R. Tchitnga, and T. M. Bernhardt, J. Phys. Chem. C 113, 10264 (2009).
- 12 D. Ricci, A. Bongiorno, G. Pacchioni, and U. Landman, Phys. Rev. Lett. 97, 036106 (2006).
- 13 T. König, G. H. Simon, H.-P. Rust, and M. Heyde, J. Phys. Chem. C 113, 11301 (2009).
- 14 C. Zhang, B. Yoon, and U. Landman, J. Am. Chem. Soc. 129, 2228 (2007).
- 15 G. Pacchioni, L. Giordano, and M. Baistrocchi, Phys. Rev. Lett. 94, 226104 (2005).
- 16 P. Frondelius, A. Hellman, K. Honkala, H. Häkkinen, and H. Grönbeck, Phys. Rev. B 78, 085426 (2008).
- 17 H. Grönbeck, J. Phys. Chem. B 110, 11977 (2006).
- 18 M. Sterrer, T. Risse, U. Martinez Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, and H.-J. Freund, Phys. Rev. Lett. 98, 096107 (2007).
- 19 J. Wollschläger, J. Viernow, C. Tegenkamp, D. Erdös, K. M. Schröder, and H. Pfnür, Appl. Surf. Sci. 142, 129 (1999). S. Valeri, S. Altieri, A. di Bona, C. Giovanardi, and T. S. Moia, Thin Solid Films 400, 16 (2001).
- 20 M. Sterrer, M. Heyde, M. Novicki, N. Nilius, T. Risse, H.-P. Rust, G. Pacchioni, and H. J. Freund, J. Phys. Chem. B 110, 46 (2006).
- 21 M.-C. Wu, J. S. Corneille, C. A. Estrada, J.-W. He, and D. W. Goodman, Chem. Phys. Lett. 182, 472 (1991).
- 22 M.-C. Wu, J. S. Corneille, J.-W. He, C. A. Estrada, and D. W. Goodman, J. Vac. Sci. Technol. A 10, 1467 (1992).
- 23 J. S. Corneille, J.-W. He, and D. W. Goodman, Surf. Sci. 306, 269 (1994). D. Ochs, W. Maus-Friedrichs, M. Brause, J. Günster, V. Kempter, V. Puchin, A. Shluger, and L. Kantorovich, Surf. Sci. 365, 557 (1996). M. C. Gallagher, M. S. Fyfield, J. P. Cowin, and S. A. Joyce, Surf. Sci. 339, L909 (1995). H.-M. Benia, P. Myrach, and N. Nilius, New J. Phys. 10, 013010 (2008). H. M. Benia, N. Nilius, and H.-J. Freund, Surf. Sci. 601, L55 (2007).
- 24 U. Heiz, F. Vanolli, L. Trento, and W.-D. Schneider, Rev. Sci. Instrum. 68, 1986 (1997).
- 25 M. C. Gallagher, M. S. Fyfield, L. A. Bumm, J. P. Cowin, and S. A. Joyce, Thin Solid Films 445, 90 (2003).
- 26 S. Benedetti, H. M. Benia, N. Nilius, S. Valeri, and H. J. Freund, Chem. Phys. Lett. 430, 330 (2006).
- 27 S. Benedetti, P. Torelli, S. Valeri, H. M. Benia, N. Nilius, and G. Renaud, Phys. Rev. B 78, 195411 (2008).
- 28 A. Kolmakov, J. Stultz, and D. W. Goodman, J. Chem. Phys. 113, 7564 (2000).
- 29 S. Wendt, Y. D. Kim, and D. W. Goodman, Prog. Surf. Sci. 74, 141 (2003).
- 30 G. Butti, M. I. Trioni, and H. Ishida, Phys. Rev. B 70, 195425 (2004). S. Prada, U. Martinez, and G. Pacchioni, Phys. Rev. B 78, 235423 (2008).
- 31 H.-J. Freund, Surf. Sci. 601, 1438 (2007).
- 32 M. Bieletzki, T. M. Soini, C. R. Henry, F. Esch, C. Barth, and U. Heiz, (in press).
- 33 S. Valeri, S. Altieri, A. di Bona, P. Luches, C. Giovanardi, and T. S. Moia, Surf. Sci. 507–510, 311 (2002).
- 34 J. Wollschläger, D. Erdös, and K.-M. Schröder, Surf. Sci. 402–404, 272 (1998).
- 35 L. Plucinski, Y. Zhao, B. Sinkovic, and E. Vescovo, Phys. Rev. B 75, 214411 (2007).
- 36 C. Barth and C. R. Henry, Nanotechnology 17, S155 (2006).
- 37 C. Barth and C. R. Henry, J. Phys. Chem. C 113, 247 (2009).
- 38 S. Kitamura and M. Iwatsuki, Appl. Phys. Lett. 72, 3154 (1998).
- 39 C. Tegenkamp, H. Pfnür, N. Ernst, U. Malaske, J. Wollschläger, D. Peterka, K. M. Schröder, V. Zielasek, and M. Henzler, J. Phys.: Condens. Matter 11, 9943 (1999). J. Kramer, W. Ernst, C. Tegenkamp, and H. Pfnür, Surf. Sci. 517, 87 (2002).
- 40 M. Sterrer, E. Fischbach, T. Risse, and H.-J. Freund, Phys. Rev. Lett. 94, 186101 (2005).
- 41 Z. Yan, S. Chinta, A. A. Mohamed, J. P. Fackler, Jr. and D. W. Goodman, J. Am. Chem. Soc. 127, 1604 (2005).
- 42 M.-C. Wu, C. M. Truong, and D. W. Goodman, Phys. Rev. B 46, 12688 (1992).
- 43 D. 1Peterka, C. Tegenkamp, K. M. Schröder, W. Ernst, and H. Pfnür, Surf. Sci. 431, 146 (1999).
- 44 C. Di Valentin, G. Pacchioni, S. Abbet, and U. Heiz, J. Phys. Chem. B 106, 7666 (2002).
- 45 C. Di Valentin, G. Pacchioni, M. Chiesa, E. Giamello, S. Abbet, and U. Heiz, J. Phys. Chem. B 106, 1637 (2002).
- 46 G. Pacchioni, ChemPhysChem 4, 1041 (2003).
- 47 G. Pacchioni and P. Pescarmona, Surf. Sci. 412/413, 657 (1998).
- 48 M. Sterrer, E. Fischbach, M. Heyde, N. Nilius, H.-P. Rust, T. Risse, and H. J. Freund, J. Phys. Chem. B 110, 8665 (2006).
- 49 P. V. Sushko, J. L. Gavartin, and A. L. Shluger, J. Phys. Chem. B 106, 2269 (2002). L. Giordano, U. Martinez, G. Pacchioni, M. Watkins, and A. L. Shluger, J. Phys. Chem. C 112, 3857 (2008).
- 50 M. Dynna, J. L. Vassent, A. Marty, and B. Gilles, J. Appl. Phys. 80, 2650 (1996).
- 51 J. Wollschläger, D. Erdös, H. Goldbach, R. Höpken, and K. M. Schröder, Thin Solid Films 400, 1 (2001).
- 52 M. E. Vaida, P. E. Hindelang, and T. M. Bernhardt, J. Chem. Phys. 129, 011105 (2008).
- 53 M. Vaida and T. M. Bernhardt, Eur. J. Phys. D 52, 119 (2009).
- 54 G. Li and H. J. Hwang, J. Chem. Phys. 124, 244306 (2006). C. Hu, S. Pei, Y.-L. Chen, and K. Liu, J. Phys. Chem. A 111, 6813 (2007).
- 55 J. L. Knee, L. R. Khundkar, and A. H. Zewail, J. Chem. Phys. 83, 1996 (1985). L. R. Khundkar and A. H. Zewail, Chem. Phys. Lett. 142, 426 (1987). D. P. Zhong, P. Y. Cheng, and A. H. Zewail, J. Chem. Phys. 105, 7864 (1996). R. de Nalda, J. Durá, A. Garcia-Vela, J. G. Izquierdo, J. González-Vázquez, and L. Banares, J. Chem. Phys. 128, 244309 (2008).
- 56 D. P. Zhong and A. H. Zewail, J. Phys. Chem. A 102, 4031 (1998). J. Durá, R. De Nalda, J. Álvarez, J. G. Izquierdo, G. A. Amaral, and L. Banares, ChemPhysChem 9, 1245 (2008).
- 57 R. de Nalda, J. G. Izquierdo, J. Durá, and L. Banares, J. Chem. Phys. 126, 021101 (2007).
- 58 A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, and S. N. Yurchenko, J. Chem. Phys. 126, 234102 (2007).
- 59 A. B. Alekseyev, H.-P. Liebermann, and R. J. Buenker, J. Chem. Phys. 126, 234103 (2007).
- 60 J. Kutzner, G. Lindeke, K. H. Welge, and D. Feldmann, J. Chem. Phys. 90, 548 (1989). K. A. Trentelman, D. H. Fairbrother, P. C. Stair, P. G. Strupp, and E. Weitz, J. Vac. Sci. Technol. A 9, 1820 (1991). K. A. Trentelman, D. H. Fairbrother, P. G. Strupp, P. C. Stair, and E. Weitz, J. Chem. Phys. 96, 9221 (1992). D. H. Fairbrother, K. A. Trentelman, P. G. Strupp, P. C. Stair, and E. Weitz, J. Vac. Sci. Technol. A 10, 2243 (1992). D. H. Fairbrother, K. A. Briggman, P. C. Stair, and E. Weitz, J. Phys. Chem. 98, 13042 (1994). D. H. 1Fairbrother, K. A. Briggman, P. C. Stair, and E. Weitz, J. Chem. Phys. 102, 7267 (1995). K. A. Briggman, P. C. Stair, and E. Weitz, Chem. Phys. Lett. 334, 1 (2001).
- 61 J. Y. Fang and H. Guo, J. Chem. Phys. 101, 5831 (1994). J. V. Setzler, Z. H. Huang, and H. Guo, J. Chem. Phys. 103, 4300 (1995).
- 62 H. Guo and G. C. Schatz, Chem. Phys. Lett. 184, 245 (1991).
- 63 R. S. Mulliken, J. Chem. Phys. 8, 382 (1940).
- 64 J. W. Hudgens, T. G. DiGiuseppe, and M. C. Lin, J. Chem. Phys. 79, 571 (1983).
- 65 J.-Y. Fang and H. Guo, Chem. Phys. Lett. 235, 341 (1995).
- 66 M. A. Henderson, G. E. Mitchell, and J. M. White, Surf. Sci. 184, L325 (1987). M. X. Yang, S. K. Jo, A. Paul, L. Avila, B. E. Bent, and K. Nishikida, Surf. Sci. 325, 102 (1995).
- 67 V. P. Holbert, S. J. Garrett, J. C. Bruns, P. C. Stair, and E. Weitz, Surf. Sci. 314, 107 (1994).
- 68 M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 405 (1987). M. Haruta, Catal. Today 36, 153 (1997). M. Haruta and M. Daté, Appl. Catal. A 222, 427 (2001).
- 69 M. Haruta, Nature 437, 1098 (2005).
- 70 M. Haruta, Gold Bull. 37, 27 (2004).
- 71 M. Chen and D. W. Goodman, Oxide-Supported Metal Clusters, in: The Chemical Physics of Solid Surfaces, Vol. 12, edited by D. P. Woodruff (Elsevier, Amsterdam, 2007), p. 201. D. W. Goodman, Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, New York, 2004), p. 611. R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H.-J. Freund, Gold Bull. 37, 72 (2004).
- 72 A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Häkkinen, R. N. Barnett, and U. Landman, J. Phys. Chem. A 103, 9573 (1999).
- 73 H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem. Int. Ed. Engl. 42, 1297 (2003).
- 74 B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307, 403 (2005).
- 75 M. Sterrer, T. Risse, M. Heyde, H.-P. Rust, and H.-J. Freund, Phys. Rev. Lett. 98, 206103 (2007). V. Simic-Milosevic, M. Heyde, X. Lin, T. König, H.-P. Rust, M. Sterrer, T. Risse, N. Nilius, H.-J. Freund, L. Giordano, and G. Pacchioni, Phys. Rev. B 78, 235429 (2008). X. Lin, N. Nilius, H.-J. Freund, M. Walter, P. Frondelius, K. Honkala, and H. Häkkinen, Phys. Rev. Lett. 102, 206801 (2009).
- 76 V. Simic-Milosevic, M. Heyde, N. Nilius, T. König, H.-P. Rust, M. Sterrer, T. Risse, H.-J. Freund, L. Giordano, and G. Pacchioni, J. Am. Chem. Soc. 130, 7814 (2008).
- 77 B. Yoon and U. Landman, Phys. Rev. Lett. 100, 056102 (2008).
- 78 J. Li, H.-J. Zahi, and L.-S. Wang, Science 299, 864 (2003).
- 79 M. Tadjeddine, J. P. Flament, and C. Teichtel, Chem. Phys. 118, 45 (1987).