Electrical and optical properties of TiO2 thin films prepared by plasma-enhanced atomic layer deposition
Corresponding Author
Van-Son Dang
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Corresponding author: e-mail [email protected], Phone: +49 234 3228641, Fax: +49 234 3214174
e-mail [email protected], Phone: +49 234 3224150, Fax: +49 234 3214174
Search for more papers by this authorHarish Parala
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorJin Hyun Kim
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorKe Xu
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorNagendra B. Srinivasan
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorEugen Edengeiser
Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorMartina Havenith
Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorAndreas D. Wieck
Applied Solid State Physics, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorTeresa de los Arcos
Experimental Physics II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorRoland. A. Fischer
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorCorresponding Author
Anjana Devi
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Corresponding author: e-mail [email protected], Phone: +49 234 3228641, Fax: +49 234 3214174
e-mail [email protected], Phone: +49 234 3224150, Fax: +49 234 3214174
Search for more papers by this authorCorresponding Author
Van-Son Dang
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Corresponding author: e-mail [email protected], Phone: +49 234 3228641, Fax: +49 234 3214174
e-mail [email protected], Phone: +49 234 3224150, Fax: +49 234 3214174
Search for more papers by this authorHarish Parala
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorJin Hyun Kim
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorKe Xu
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorNagendra B. Srinivasan
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorEugen Edengeiser
Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorMartina Havenith
Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorAndreas D. Wieck
Applied Solid State Physics, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorTeresa de los Arcos
Experimental Physics II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorRoland. A. Fischer
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Search for more papers by this authorCorresponding Author
Anjana Devi
Inorganic Chemistry II, Ruhr-University Bochum, Bochum, Germany
Corresponding author: e-mail [email protected], Phone: +49 234 3228641, Fax: +49 234 3214174
e-mail [email protected], Phone: +49 234 3224150, Fax: +49 234 3214174
Search for more papers by this authorAbstract
We report on the electrical and optical characterisation of the high-permittivity (high-κ) TiO2 thin films grown by plasma enhanced atomic layer deposition on Si (100) and glass substrates, respectively. TiO2 films were incorporated in metal-oxide semiconductor (MOS) capacitor structures with an Al metal gate electrode. The as-deposited films were amorphous; however upon annealing in the temperature range 500–900 °C, crystalline TiO2 in the anatase phase was formed. This was further confirmed by performing Raman measurements where the characteristic features corresponding to the anatase phase were observed. Transmittance and absorption spectra of the as-deposited and annealed films were performed by UV–Vis measurements showing more than 70% of transmittance. The formation of stoichiometric TiO2 was revealed by X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS) analysis performed on annealed samples (500–900 °C). The dielectric constants were calculated from capacitance–voltage (C–V) curves of the MOS structure on the as-deposited film and annealed films revealing a significant improvement of the dielectric constants from 10 to 75 at AC frequencies of 100 kHz for the 700 °C annealed TiO2 thin films. The increase in the dielectric constant for annealed films could be attributed to the transformation of film structure from amorphous to polycrystalline (anatase). However, the transformation of amorphous to crystalline phase, leads to an increase in the leakage current which was also found best fitted with Schottky emission mechanism at moderated electric fields.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201330115-sm-0001-SuppFigs.pdf40.8 KB | Supporting Figures |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nature Nanotechnol. 5, 148 (2010).
- 2 P. Alexandrov, J. Koprinarova, and D. Todorov, Solid-State. Electron. 47, 1333 (1996).
- 3 T. G. A. Samara and P. S. Peercy, Phys. Rev. B 7, 1131 (1973).
- 4 F. Dachille, P. Y. Simons, and R. Roy, Am. Mineralogist 53, 1929 (1968).
- 5 L. D. Zhang, H. F. Zhang, G. Z. Wang, C. M. Mo, and Y. Zhang, Phys. Status Solidi A 157, 483, (1996).
- 6 J. Robertson, J. Non-Cryst. Solids 303, 94 (2002).
- 7 W. G. Lee, S. I. Woo, J. C. Kim, S. H. Choi, and K. H. Oh, Thin Solid Films 237, 105 (1994).
- 8 M. Kariniemi, J. Niinisto, M. Vehkamaki, M. Kemell, M. Ritala, M. Leskela, and M. Putkonen, J. Vac. Sci. Technol A 30, 01A115 (2012).
- 9 G. J. Choi, S. K. Kim, S. J. Won, H. J. Kim, and C. S. Hwang, J. Electrochem. Soc. 156, G138 (2009).
- 10 N. G. Kubala and C. A. Wolden, Thin Solid Films 518, 6733 (2010).
- 11 W. J. Maeng and H. Kim, Electrochem. Solid State Lett. 9, G191 (2006).
- 12 G. T. Lim and D. H. Kim, Thin Solid Films 498, 254 (2006).
- 13 M. Reiners, K. Xu, N. Aslam, A. Devi, R. Waser, and S. Hoffmann-Eifert, Chem. Mater. 25, 2934 (2013).
- 14 S. J. Kim, H. Parala, R. Beranek, M. Bledowski, K. Sliozberg, H.-W. Becker, D. Rogalla, D. Barreca, C. Maccato, C. Sada, W. Schuhmann, R. A. Fischer, and A. Devi, Chem. Vapor Depos. 19, 45 (2013).
- 15 I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
- 16 E. Kotai, Nucl. Instrum. Methods Phys. Res. B 85, 588 (1994).
- 17 D. J. Kim, S. H. Hahn, S. H. Oh, and E. J. Kim, Mater. Lett. 57, 355 (2002).
- 18 K. Jiang, A. Zakutayev, J. Stowers, M. D. Anderson, J. Tate, D. H. McIntyre, D. C. Johnson, and D. A. Keszler, Solid State Sci. 11, 1692 (2009).
- 19 S. B. Amor, L. Guedri, G. Baud, M. Jacquet, and M. Ghedira, Mater. Chem. Phys. 77, 903 (2003).
- 20 P. Babelon, A. S. Dequiedt, H. Mostefa-Sba, S. Bourgeois, P. Sibillot, and M. Sacilotti, Thin Solid Films 322, 63–667 (1998).
- 21 H. Wang, Z. Wu, and Y. Liu, J. Phys. Chem. C 113, 13317 (2009).
- 22 S. Y. Lee, C. Jeon, S. H. Kim, Y. Kim, W. Jung, K. S. An, and C. Y. Park, Jpn. J. Appl. Phys. 51, 031102 (2012).
- 23 T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).
- 24 A. E. Jim'enez Gonz'alez and S. Gelover Santiago, Semicond. Sci. Technol. 22, 709 (2007).
- 25 E. Gofuku, Y. Toyoda, Y. Uehara, M. Kohara, and M. Nunoshita, Appl. Surf. Sci. 48–49, 343 (1991).
- 26 Z. W. Zhao, B. K. Tay, S. P. Lau, and G. Q. Yu, J. Cryst. Growth 268, 543 (2004).
- 27 V. Luca, S. Djajanti, and R. F. Howe, J. Phys. Chem. B 102, 10650 (1998).
- 28 M. Landmann, T. Koehler, S. Koeppen, E. Rauls, T. Frauenheim, and W. G. Schmidt, Phys. Rev. B 86, 064201 (2012).
- 29 S. Duenas, H. Castan, H. Garcia, E. San Andres, M. Toledano-Luque, I. Martil, G. Gonzalez-Diaz, K. Kukli, T. Uustare, and J. Aarik, Semicond. Sci. Technol. 20, 1044 (2005).
- 30 V. Mikhelashvili and G. Eisenstein, J. Appl. Phys. 89, 3256 (2001).
- 31 W. L. Yang, J. Marino, A. Monson, and C. A. Wolden, Semicond. Sci. Technol. 21, 1573 (2006).
- 32 W. Yang and C. Wolden, Thin Solid Films 515, 1708 (2006).
- 33 H. Yang, Y. Son, S. Choi, and H. Hwang, Jpn. J. Appl. Phys. 44, L1460 (2005).
- 34 B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi, and J. Lee, Appl. Phys. Lett. 74, 3143 (1999).
- 35 A. Tataroglu, S. Altindal, and M. M. Bulbul, Microelectron. Eng. 81, 140 (2005).
- 36 A. Ghosh, Phys. Rev. B 41, 1479 (1990).
- 37 A. A. Dakhel, J. Alloy Compd. 422, 1 (2006).
- 38 J. W. Lim, S. J. Yun, and J. H. Lee, Electrochem. Solid State Lett. 7, F73 (2004).
- 39 S. Kim, S. L. Brown, S. M. Rossnagel, J. Bruley, M. Copel, M. J. P. Hopstaken, V. Narayanan, and M. M. Frank, J. Appl. Phys. 107, 054102 (2010).
- 40 G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
- 41 S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley Interscience, New York, Berlin, 2007), chap. 4.