Unintentional annealing of the active layer in the growth of InGaN/GaN quantum well light-emitting diode structures
Corresponding Author
J. Mickevičius
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorD. Dobrovolskas
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Search for more papers by this authorI. Šimonytė
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Search for more papers by this authorCorresponding Author
G. Tamulaitis
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorC.-Y. Chen
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorC.-H. Liao
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorH.-S. Chen
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorCorresponding Author
C. C. Yang
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorCorresponding Author
J. Mickevičius
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorD. Dobrovolskas
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Search for more papers by this authorI. Šimonytė
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Search for more papers by this authorCorresponding Author
G. Tamulaitis
Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorC.-Y. Chen
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorC.-H. Liao
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorH.-S. Chen
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Search for more papers by this authorCorresponding Author
C. C. Yang
Institute of Photonics and Optoelectronics, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan
Phone: +370 5 2366096, Fax: +370 5 2366070
Search for more papers by this authorAbstract
The effects of increasing p-type layer thickness on the photoluminescence (PL) of InGaN/GaN quantum well (QW) light-emitting diode (LED) structures are studied using confocal microscopy. Due to composition fluctuations in the QWs, spatially inhomogeneous PL intensity distribution is observed in all the LED structures with different p-type layer thicknesses. Meanwhile, the spectral peak position and the difference in PL intensity between the bright and dark areas exhibit nonmonotonous behavior. Such behavior is attributed to the concurrent effects of thermal annealing during the high-temperature overgrowth of p-type layer, the variation of the quantum-confined Stark effect (QCSE) due to the increase of p-type layer thickness, and carrier delocalization. The PL intensity increases with increasing p-type thickness when the thickness is smaller than a certain value and decreases beyond this thickness.
References
- 1 T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997).
- 2 S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998).
- 3 V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Phys. Rev. B 60, 8849 (1999).
- 4 Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).
- 5 S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
- 6 M. H. Crawford, IEEE J. Sel. Top. Quantum Electron. 15, 1028 (2009).
- 7 K. P. O'Donnell, M. Auf der Maur, A. Di Carlo, and K. Lorenz, and the SORBET consortium, Phys. Status Solidi RRL 6, 49 (2012).
- 8 C.-C. Chuo, C.-M. Lee, T.-E. Nee, and J.-I. Chyi, Appl. Phys. Lett. 76, 3902 (2000).
- 9 C.-C. Chuo, M. N. Chang, F.-M. Pan, C.-M. Lee, and J.-I. Chyi, Appl. Phys. Lett. 80, 1138 (2002).
- 10 Y.-S. Lin, K.-J. Ma, C. Hsu, Y.-Y. Chung, C.-W. Liu, S.-W. Feng, Y.-C. Cheng, C. C. Yang, H.-W. Chuang, C.-T. Kuo, J.-S. Tsang, and T. E. Weirich, Appl. Phys. Lett. 80, 2571 (2002).
- 11 Y.-Y. Chung, Y.-S. Lin, S.-W. Feng, Y.-C. Cheng, E.-C. Lin, C. C. Yang, K.-J. Ma, C. Hsu, H.-W. Chuang, C.-T. Kuo, and J.-S. Tsang, J. Appl. Phys. 93, 9693 (2003).
- 12 S.-W. Feng, T.-Y. Tang, Y.-C. Lu, S.-J. Liu, E.-C. Lin, C. C. Yang, K.-J. Ma, C.-H. Shen, L. C. Chen, K. H. Kim, J. Y. Lin, and H. X. Jiang, J. Appl. Phys. 95, 5388 (2004).
- 13 W.-H. Lee, K. S. Kim, G. M. Yang, C.-H. Hong, K. Y. Lim, E.-K. Suh, and H. J. Lee, J. Korean Phys. Soc. 39, 136 (2001).
- 14 T. S. Kim, J. Y. Park, T. V. Cuong, H. G. Kim, H. J. Lee, E.-K. Suh, and C.-H. Hong, J. Korean Phys. Soc. 47, 871 (2005).
- 15 H. F. Liu, W. Liu, A. M. Yong, X. H. Zhang, S. J. Chua, and D. Z. Chi, J. Appl. Phys. 110, 063505 (2011).
- 16 J. B. Limb, W. Lee, J.-H. Ryou, D. Yoo, and R. D. Dupuis, J. Electron. Mater. 36, 426 (2007).
- 17 J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, Appl. Phys. Lett. 92, 101113 (2008).
- 18 C.-H. Liao, C.-Y. Chen, H.-S. Chen, K.-Y. Chen, W.-L. Chung, W.-M. Chang, J.-J. Huang, Y.-F. Yao, Y.-W. Kiang, and C. C. Yang, IEEE Photon. Technol. Lett. 23, 1757 (2011).
- 19 C.-Y. Chen, C. Hsieh, C.-H. Liao, W.-L. Chung, H.-T. Chen, W. Cao, W.-M. Chang, H.-S. Chen, Y.-F. Yao, S.-Y. Ting, Y.-W. Kiang, C. C. Yang, and X. Hu, Opt. Express 20, 11321 (2012).
- 20 K. Kazlauskas, G. Tamulaitis, A. Žukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, Appl. Phys. Lett. 83, 3722 (2003).
- 21 K. Kazlauskas, G. Tamulaitis, P. Pobedinskas, A. Žukauskas, M. Springis, C. F. Huang, Y. C. Cheng, and C. C. Yang, Phys. Rev. B 71, 085306 (2005).
- 22 V. Liuolia, A. Pinos, S. Marcinkevičius, Y. D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 97, 151106 (2010).
- 23 A. Pinos, V. Liuolia, S. Marcinkevičius, J. Yang, R. Gaska, and M. S. Shur, J. Appl. Phys. 109, 113516 (2011).
- 24 Q. Wang, T. Wang, J. Bai, A. G. Cullis, P. J. Parbrook, and F. Ranalli, Appl. Phys. Lett. 93, 081915 (2008).
- 25 G. T. Thaler, D. D. Koleske, S. R. Lee, K. H. A. Bogart, and M. H. Crawford, J. Cryst. Growth 312, 1817 (2010).
- 26 D. Dobrovolskas, J. Mickevičius, V. Kazlauskienė, J. Miškinis, E. Kuokštis, G. Tamulaitis, P. Onufrijevs, A. Medvids, J.-J. Huang, C.-Y. Chen, C.-H. Liao, and C. C. Yang, J. Lumin. 131, 1322 (2011).
- 27 N. K. van der Laak, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 102, 013513 (2007).
- 28 M. Leroux, N. Grandjean, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, Phys. Rev. B 60, 1496 (1999).