Fabrication of Cu2ZnSnS4 absorbers by sulfurization of Sn-rich precursors
Corresponding Author
Jie Ge
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Phone: +86-21-58973313, Fax: +86-21-58971790Search for more papers by this authorWenlei Yu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Search for more papers by this authorHong Cao
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorJinchun Jiang
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorJianhua Ma
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorLihong Yang
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorCorresponding Author
Pingxiong Yang
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Phone: +86-21-58973313, Fax: +86-21-58971790Search for more papers by this authorZhigao Hu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Search for more papers by this authorJunhao Chu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorCorresponding Author
Jie Ge
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Phone: +86-21-58973313, Fax: +86-21-58971790Search for more papers by this authorWenlei Yu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Search for more papers by this authorHong Cao
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorJinchun Jiang
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorJianhua Ma
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorLihong Yang
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorCorresponding Author
Pingxiong Yang
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Phone: +86-21-58973313, Fax: +86-21-58971790Search for more papers by this authorZhigao Hu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Search for more papers by this authorJunhao Chu
Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Electronic Engineering, East China Normal University, Shanghai 200241, P. R. China
Shanghai Center for Photovoltaics, Shanghai 201201, P. R. China
Search for more papers by this authorAbstract
Cu2ZnSnS4 (CZTS) absorbers were grown by sulfurization of the Sn-rich precursors that were cosputtered from a CuSn target (2 in.) and a ZnS target (2 in.). The excess Sn in the precursor could limit the decomposition of CZTS during the long sulfurization process at 510 °C. The sulfurized CZTS film cosputtered with CuSn 45 W and ZnS 70 W exhibits the intended bandgap of 1.53 eV, main Raman mode at 335.5 cm−1 and a slightly Sn-rich composition. As the sputtering power of the CuSn target was increased from 45 to 60 W, the corresponding films consisted of a CZTS phase and several Sn-rich phases (SnS/Sn2S3/Cu4Sn7S16). Conversely, when this sputtering power was reduced to 35 W, the resultant film consisted of a CZTS phase and a ZnS secondary phase. Besides, Raman scattering shows that the increased sputtering power of the CuSn target is related with the redshift and the increased FWHMs of primary Raman modes for the resultant films. X-ray diffraction data show the (112)-oriented growth and lattice expansion for the obtained CZTS films.
References
- 1 T. M. Friedlmeier, H. Dittrich, and H. W. Schock, Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications, The 11th Conference on Ternary and Multinary Compounds, ICTMC-11, Salford, 8–12 September 1997, pp. 345– 348.
- 2 B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Prog. Photovolt.: Res. Appl.; DOI: 10.1002/pip.1174 (2011).
- 3 A. Redinger, D. M. Berg, P. J. Dale, and S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011).
- 4 A. Weber, R. Mainz, and H. W. Schock, J. Appl. Phys. 107, 013516 (2010).
- 5 J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Björkman, Chem. Mater. 23, 4625– 4633 (2011).
- 6 J. B. Li, V. Chawla, and B. M. Clemens, Adv. Mater. 24, 720– 723 (2012).
- 7 B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H. Schock, Prog. Photovolt.: Res. Appl. 19, 93– 96 (2011).
- 8 P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, Semicond. Sci. Technol. 24, 105013 (2009).
- 9 R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, A. Ennaoui, M. Lux-Steiner, A. Weber, I. Kötschau, and H.-W. Schock, Thin Solid Films 517, 2465– 2468 (2009).
- 10 H. Araki, Y. Kubo, K. Jimbo, W. S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, and A. Takeuchi, Phys. Status Solidi C 6, 1266– 1268 (2009).
- 11 A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, and A. Kirbs, Thin Solid Films 517, 2511– 2514 (2009).
- 12 P. A. Fernandes, P. M. P. Salomé, and A. F. da Cunha, J. Alloys Compd. 509, 7600– 7606 (2011).
- 13 L. S. Price, I. P. Parkin, A. M. E. Hardy, R. J. H. Clark, T. G. Hibbert, and K. C. Molloy, Chem. Mater. 11, 1792– 1799 (1999).
- 14 T. Gurel, C. Sevik, and T. Cagın, Phys. Rev. B 84, 205201 (2011).
- 15 H. Himmrich and H. Haeuseler, Spectrochim. Acta 47, 933– 942 (1991).
- 16 A. J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, and E. S. Aydil, J. Vac. Sci. Technol. A 29, 051203 (2011).
- 17 E. Rudigier, I. Luck, and R. Scheer, Appl. Phys. Lett. 82, 4370– 4372 (2003).
- 18 V. Izquierdo-Roca, A. Pérez-Rodríguez, J. R. Morante, J. Álvarez-García, L. Calvo-Barrio, V. Bermudez, P. P. Grand, L. Parissi, C. Broussillon, and O. Kerrec, J. Appl. Phys. 103, 123109 (2008).
- 19 Y. B. Kishore Kumar, G. Suresh Babu, P. U. Bhaskar, and V. S. Raja, Phys. Status Solidi A 206, 1525– 1530 (2009).
- 20 T. H. Sajeesh, N. Poornima, C. Sudha Kartha, and K. P. Vijayakumar, Phys. Status Solidi A 207, 1934– 1939 (2010).
- 21 S. López, S. Granados, and A. Ortíz, Semicond. Sci Technol. 11, 433– 436 (1996).
- 22 S. Fiechter, M. Martinez, G. Schmidt, W. Henrion, and Y. Tomm, J. Phys. Chem. Solids 64, 1859– 1862 (2003).