Compositional and photoluminescent properties of anodically and stain etched porous silicon
F. A. Ben-Hander
Departamento de Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorJ. L. G. Fierro
Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorC. Hernández-Rodríguez
Laboratorio de Óptica, Departamento de Física Básica, Universidad de La Laguna, 38204 S/C de Tenerife, Spain
Search for more papers by this authorJ. M. Martínez-Duart
Departamento de Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorF. A. Ben-Hander
Departamento de Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorJ. L. G. Fierro
Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain
Search for more papers by this authorC. Hernández-Rodríguez
Laboratorio de Óptica, Departamento de Física Básica, Universidad de La Laguna, 38204 S/C de Tenerife, Spain
Search for more papers by this authorJ. M. Martínez-Duart
Departamento de Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Search for more papers by this authorAbstract
A comparison of the compositional and photoluminescent properties of stain etched (SE) and anodically etched (AE) porous silicon (PS) samples has been carried out. The silicon substrates used and the laboratory conditions are the same for both types of etching processes. The study is carried out varying the PS surface properties by means of different cleaning procedures and post-etching ambient conditions. The results demonstrate that the evolution of the photoluminescence and the composition are related for both types of PS (AE and SE). Thus, it seems highly likely that the photoluminescence mechanisms involved in both cases are similar.
References
- [1] L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
- [2] N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).
- [3] R. J. Archert, J. Phys. Chem. Solids 14, 104 (1960).
- [4] R. W. Fathauer, T. George, A. Ksendzov, and R. P. Vasquez, Appl. Phys. Lett. 60, 995 (1992).
- [5] T. George, M. S. Anderson, W. T. Pike, T. L. Lin, R. W. Fathauer, H. Jung, and D. L. Kwong, Appl. Phys. Lett. 60, 2359 (1992).
- [6] P. Menna, G. Di Francia, and V. La Ferrara, Solar Energy Mat. Solar Cells 37, 13 (1995).
- [7] R. R. Bilyalov, H. Lautenschlanger, and R. Schindler, Proc. 2nd World Conf. Photovoltaic Solar Energy Conversion, Vienna, Austria, 1999, p. 1642.
- [8] P. Menna and S. Tsuo, in: Properties of Porous Silicon, edited by L. T. Canham (INSPEC, 1997), p. 384.
- [9] V. Y. Yerokhov and I. I. Melnik, Renew. Sustain. Energy Rev. 3, 291 (1999).
- [10] M. V. Volkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
- [11] J. Von-Behren, M. Wolkin-Vakrat, J. Jorne, and P. Fauchet, J. Porous Mater. 7, 81 (2000).
- [12] J. Diener, D. Kovalev, H. Heckler, C. Polisski, and F. Koch, Phys. Rev. B 63, 46 (2001).
- [13] R. Guerrero-Lemus and J. M. Martínez-Duart, Thin Solid Films 297, 118 (1997).
- [14] R. Guerrero-Lemus, J. L. G. Fierro, J. D. Moreno, and J. M. Martínez-Duart, Mater. Sci. Technol. 11, 711 (1995).
- [15] P. Lange, U. Schnakenberg, S. Ullerich, and H.-J. Schliwinski, J. Appl. Phys. 68, 3532 (1990).
- [16] K. Krishnan, P. J. Stout, and M. Watanabe, in: Practical Fourier Transform Infrared Spectroscopy, edited by R. J. Ferraro and K. Krihnan (Academic Press, 1990).
- [17] Y. J. Chabal, G. S. Higashi, and S. B. Christman, Phys. Rev. B 28, 4472 (1983).
- [18] P. J. Launer, in: Silicon Compounds Register and Review, Petrarch Systems Silanes and Silicones (Petrarch System, 1987).
- [19] D. Gräf, M. Grundner, R. Schulz, and L. Mühlhoff, J. Appl. Phys. 68, 5155 (1990).
- [20] D. B. Mawhinney, J. A. Glass Jr., and J. T. Yates Jr., J. Phys. Chem. B 101, 1202 (1997).
- [21] G. M. Ingo, N. Zachetti, D. Della Sala, and C. Coluzza, J. Vac. Sci. Technol. 7, 3048 (1989).
- [22] G. Hollinger and F. J. Himpsel, Appl. Phys. Lett. 44, 93 (1984).
- [23] G. Hollinger, J. F. Morar, F. J. Himpsel, G. Hughes, and J. L. Jordan, Surf. Sci. 168, 609 (1986).
- [24] S. I. Raider, R. Flitsch, J. A. Aboaf, and W. A. Pliskin, J. Electrochem. Soc. 123, 560 (1976).
- [25] L. Ley, J. Reichardt, and R. L. Johnson, Phys. Rev. Lett. 49, 1664 (1982).
- [26] G. Lukovsky, M. J. Manitiny, J. K. Srivastava, and E. A. Irene, J. Vac. Sci. Technol. B 5, 530 (1987).
- [27] R. Herino, G. Bomchil, K. Barla, C. Bertrand, and G. L. Ginoux, J. Electrochem. Soc. 134, 1994 (1987).
- [28] L. Schirone, G. Sotgiu, and M. Montechi, J. Lumin. 80, 163 (1999).
- [29] L. T. Canham, M. R. Houlton, W. Y. Leong, C. Pickering, and J. M. Keen, J. Appl. Phys. 70, 422 (1991).