Chemical Kinetics and Reactive Species in Normal Saline Activated by a Surface Air Discharge
Zhi Chao Liu
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorLi Guo
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorCorresponding Author
Ding Xin Liu
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorMing Zhe Rong
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorHai Lan Chen
Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, 23508 USA
Search for more papers by this authorCorresponding Author
Michael G. Kong
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, 23508 USA
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, 23529 USA
Search for more papers by this authorZhi Chao Liu
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorLi Guo
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorCorresponding Author
Ding Xin Liu
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorMing Zhe Rong
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Search for more papers by this authorHai Lan Chen
Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, 23508 USA
Search for more papers by this authorCorresponding Author
Michael G. Kong
State Key Lab of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Shaanxi, P R China
Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, 23508 USA
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, 23529 USA
Search for more papers by this authorAbstract
Normal saline is a common biological solution which provides much better living environment for Staphylococcus aureus than deionized water, but the plasma-activated normal saline is found to have a stronger bactericidal effect than the plasma-activated deionized water. A model is developed for the explanation, from which various kinds of reactive chlorine/oxy-chlorine species (RCS), such as HClO, are found to be generated in the plasma-activated normal saline. The production pathways of RCS are elucidated, in which O3 plays as an important intermediate species. Compared to the plasma-activated deionized water, the concentrations of reactive oxygen/nitrogen species are lower, but the bactericidal effect is higher, implying that the RCS play a crucial role for the sterilization.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ppap201600113-sup-0001-SupData-S1.pdf73.7 KB | Supporting Data |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J. L. Zimmermann, New J. Phys. 2009, 11, 115012.
- 2 D. Xu, D. Liu, B. Wang, C. Chen, Z. Chen, D. Li, Y. Yang, H. Chen, M. G. Kong, PLoS ONE 2015, 10, e0128205.
- 3 S. Y. Zhong, Y. Y. Dong, D. X. Liu, D. H. Xu, S. X. Xiao, H. L. Chen, M. G. Kong, Br. J. Dermatol. 2016, 174, 542.
- 4 M. L. Parisi, E. Fatarella, D. Spinelli, R. Pogni, R. Basosi, J. Clean. Prod. 2015, 108, 514.
- 5 P. Novak, T. Zuliani, R. Milačič, J. Ščančar, Anal. Chim. Acta 2016, 915, 27.
- 6 D. Mariotti, J. Patel, V. Švrček, P. Maguire, Plasma Process. Polym. 2012, 9, 1074.
- 7 D. Mariotti, R. M. Sankaran, J. Phys. D: Appl. Phys. 2011, 44, 174023.
- 8 P. Rumbach, D. M. Bartels, R. M. Sankaran, D. B. Go, Nat. Commun. 2015, 6, 7248.
- 9 W. Tian, M. J. Kushner, J. Phys. D: Appl. Phys. 2014, 47, 165201.
- 10 A. Tani, Y. Ono, S. Fukui, S. Ikawa, K. Kitano, Appl. Phys. Lett. 2012, 100, 254103.
- 11 C. Chen, D. X. Liu, Z. C. Liu, A. J. Yang, H. L. Chen, G. Shama, M. G. Kong, Plasma Chem. Plasma Process. 2014, 34, 403.
- 12 P. Olszewski, J. F. Li, D. X. Liu, J. L. Walsh, J. Hazard. Mater. 2014, 279, 60.
- 13 D. B. Graves, J. Phys. D: Appl. Phys. 2012, 45, 263001.
- 14 S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, J. Phys. D: Appl. Phys. 2012, 45, 253001.
- 15 M. Witzke, P. Rumbach, D. B. Go, R. M. Sankaran, J. Phys. D: Appl. Phys. 2013, 46, 129601.
- 16 Z. C. Liu, D. X. Liu, C. Chen, D. Li, A. J. Yang, M. Z. Rong, H. L. Chen, M. G. Kong, J. Phys. D: Appl. Phys. 2015, 48, 495201.
- 17 F. D. Pope, J. C. Hansen, K. D. Bayes, R. R. Friedl, S. P. Sander, J. Phys. Chem. A 2007, 111, 4322.
- 18 Y. Sun, Y. Zhang, Y. Xia, T. Fan, M. Xue, Bulgan Enkhbayar, C. Harnoode, A. Dong, LWT − Food Sci. Technol. 2014, 59, 1068.
- 19 L. Wang, M. Bassiri, R. Najafi, K. Najafi, J. Yang, B. Khosrovi, W. Hwong, E. Barati, B. Belisle, C. Celeri, M. Robson, J. Burns Wounds 2007, 6, 65.
- 20 D. X. Liu, Z. C. Liu, C. Chen, A. J. Yang, D. Li, M. Z. Rong, H. L. Chen, M. G. Kong, Sci. Rep. 2016, 6, 23737.
- 21 J. Huang, L. Wang, N. Ren, F. Ma, Juli, Water Res. 1997, 31, 607.
- 22 S. Ikawa, K. Kitano, S. Hamaguchi, Plasma Process. Polym. 2010, 7, 33.
- 23 M. Naítali, G. Kamgang-Youbi, J. M. Herry, M. N. Bellon-Fontaine, J.-L. Brisset, Appl. Environ. Microbiol. 2010, 76, 7662.
- 24 M. Deborde, U. von Gunten, Water Res. 2008, 42, 13.
- 25 B. M. R. Bandara, O. Hinojosa, C. Bernofsky, J. Org. Chem. 1994, 59, 1642.
- 26 S. Gokulakrishnan, A. Mohammed, H. Prakash, Chem. Eng. J. 2016, 286, 223.
- 27 W. Wang, L. Zhang, T. An, G. Li, H.-Y. Yip, P.-K. Wong, Appl. Catal. B: Environ. 2011, 108–109, 108.
- 28 H. Bader, J. Hoigné, Water Res. 1981, 15, 449.
- 29 W. J. Cooper, N. M. Roscher, R. A. Slifker, J. Am. Water Works Ass. 1982, 74, 362.
- 30 C. R. Chinake, R. H. Simoyi, J. Phys. Chem. B 1997, 101, 1207.
- 31 X.-Y. Yu, J. R. Barker, J. Phys. Chem. A 2003, 107, 1313.
- 32 B. Rao, T. A. Anderson, A. Redder, W. A. Jackson, Environ. Sci. Technol. 2010, 44, 2961.
- 33 W. Behnke, C. George, V. Scheer, C. Zetzsch, J. Geophys. Res. 1997, 102, 3795.
- 34 N. Lahoutifard, P. Lagrange, J. Lagrange, Chemosphere 2003, 50, 1349.
- 35 A. Frenzel, V. Scheer, R. Sikorski, C. George, W. Behnke, C. Zetzsch, J. Phys. Chem. A 1998, 102, 1329.
- 36 D. W. Margerum, L. M. Schurter, J. Hobson, E. E. Moore, Environ. Sci. Technol. 1994, 28, 331.
- 37 H. Herrmann, B. Ervens, H.-W. Jacobi, R. Wolke, P. Nowacki, R. Zellner, J. Atmos. Chem. 2000, 36, 231.
- 38 E. M. Knipping, D. Dabdub, J. Geophys. Res. 2002, 107, ACH 8–1.
- 39 X.-Y. Yu, J. Phys. Chem. Ref. Dat. 2004, 33, 747.
- 40 M. L. Alegre, M. Geronés, J. A. Rosso, S. G. Bertolotti, A. M. Braun, D. O. Mártire, M. C. Gonzalez, J. Phys. Chem. A 2000, 104, 3117.
- 41 N. Kang, W. A. Jackson, P. K. Dasgupta, T. A. Anderson, Sci. Total Environ. 2008, 405, 301.
- 42 T. R. Chigwada, E. Chikwana, R. H. Simoyi, J. Phys. Chem. A 2005, 109, 1081.
- 43 A. K. Horváth, I. Nagypál, G. Peintler, I. R. Epstein, K. Kustin, J. Phys. Chem. A 2003, 107, 6966.
- 44 T. Lundström, H. Christensen, K. Sehested, Radiat. Phys. Chem. 2001, 61, 109.
- 45 L. Deguillaume, K. V. Desboeufs, M. Leriche, Y. Long, N. Chaumerliac, Atmos. Pollut. Res. 2010, 1, 220.
- 46 S. N. Pandis, J. H. Seinfeld, J. Geophys. Res. 1989, 94, 1105.
- 47 G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Dat. 1988, 17, 513.
- 48 P. Neta, R. E. Huie, A. B. Ross, J. Phys. Chem. Ref. Dat. 1988, 17, 1027.
- 49 U. von Gunten, Water Res. 2003, 37, 1469.
- 50 R. C. Dunn, J. D. Simon, J. Am. Chem. Soc. 1992, 114, 4856.
- 51 S. L. Quiroga, L. J. Perissinotti, J. Photoch. Photobio. A 2005, 171, 59.
- 52 I. Fabian, G. Gordon, Inorg. Chem. 1992, 31, 2144.
- 53 G. V. Buxton, M. S. Subhani, J. Chem. Soc. Faraday Trans. 1972, 68, 947.
- 54 M. J. Evans, D. J. Jacob, E. Atlas, C. A. Cantrell, F. Eisele, F. Flocke, A. Fried, R. L. Mauldin, B. A. Ridley, B. Wert, R. Talbot, D. Blake, B. Heikes, J. Snow, J. Walega, A. J. Weinheimer, J. Dibb, J. Geophys. Res. 2003, 108.