Entropic death of nonpatterned and nanopatterned polyelectrolyte brushes
Matthias Menzel
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorWei-Liang Chen
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorKimberly Simancas
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorHong Xu
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorOswald Prucker
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorChristopher K. Ober
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorCorresponding Author
Jürgen Rühe
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Correspondence to: J. Rühe (E-mail: [email protected])Search for more papers by this authorMatthias Menzel
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorWei-Liang Chen
School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorKimberly Simancas
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorHong Xu
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorOswald Prucker
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Search for more papers by this authorChristopher K. Ober
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Search for more papers by this authorCorresponding Author
Jürgen Rühe
Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
Correspondence to: J. Rühe (E-mail: [email protected])Search for more papers by this authorABSTRACT
The stability of nonpatterned and nanopatterned strong polyelectrolyte brushes (PEBs) is studied as a function of both brush character and the properties of a contacting liquid. High-molecular-weight PEBs of poly(4-methyl vinylpyridinium iodide) (PMeVP) are synthesized using surface-initiated radical-chain polymerization. Nanopatterned brushes (NPBs) line with pattern sizes ranging from 50 to 200 nm are generated by patterning the initiator layer using deep-ultraviolet photolithography followed by brush growth initiated from the patterned layer. Homogeneous PEBs with different degrees of charging and grafting densities are exposed to water and salt solutions with different temperatures for different periods. The degradation is monitored through dry-state ellipsometry and atomic force microscopy measurements. Enhanced degrafting for more strongly swollen polymer brushes can be observed in agreement with an “entropic spring” model. Based on the results of the nonpatterned brushes, the NPBs are exposed to water at different temperatures and external salt content for varying periods of time. Counterintuitively, the NPBs show increased degrafting for smaller patterns, which is attributed to different polymer chain dynamics for nanobrushes and microbrushes. We investigate the influence of thermodynamic and kinetic parameters on the stability of (nanopatterned) PEBs and discuss the role of entanglements and formation of complexes in such films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1283–1295
Conflict of Interest
The authors declare no competing conflict of interest.
Supporting Information
Filename | Description |
---|---|
pola29384-sup-0001-AppendixS1.pdfPDF document, 746 KB | Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1S. Milner, Science 1991, 251(4996), 905.
- 2R. C. Advincula, W. J. Brittain, K. C. Caster, J. Rühe, Polymer Brushes; Wiley Online Library: Weinheim, 2004.
10.1002/3527603824 Google Scholar
- 3W. J. Brittain, S. Minko, J. Polym. Sci. Part A: Polym. Chem. 2007, 45(16), 3505.
- 4W.-L. Chen, R. Cordero, H. Tran, C. K. Ober, Macromolecules 2017, 50(11), 4089.
- 5W. J. Yang, K.-G. Neoh, E.-T. Kang, S. L.-M. Teo, D. Rittschof, Prog. Polym. Sci. 2014, 39(5), 1017.
- 6W. Yang, F. Zhou, Biosurf. Biotribol. 2017, 3(3), 97.
10.1016/j.bsbt.2017.10.001 Google Scholar
- 7H. Bai, H. Zhang, Y. He, J. Liu, B. Zhang, J. Wang, J. Membr. Sci. 2014, 454, 220.
- 8H. Tang, W. Zhao, J. Yu, Y. Li, C. Zhao, Molecules 2019, 24(1), 4.
- 9G. W. de Groot, M. G. Santonicola, K. Sugihara, T. Zambelli, E. Reimhult, J. N. Vörös, G. J. Vancso, ACS Appl. Mater. Interfaces 2013, 5(4), 1400.
- 10Z. Li, H. Wang, X. Song, J. Yan, H. Hu, B. Yu, J. Electroanal. Chem. 2014, 719, 7.
- 11A. V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 2005, 30(11), 1049.
- 12P. Pincus, Macromolecules 1991, 24(10), 2912.
- 13M. Biesalski, J. Rühe, Macromolecules 2001, 35(2), 499.
- 14E. Bittrich, P. Uhlmann, K.-J. Eichhorn, K. Hinrichs, D. Aulich, A. Furchner, In Ellipsometry of Functional Organic Surfaces and Films; K. Hinrichs, K.-J. Eichhorn, Eds.; Springer: Berlin, Germany, 2014, p. 79.
10.1007/978-3-642-40128-2_5 Google Scholar
- 15P. Gu, X. Liu, Y. Tian, L. Zhang, Y. Huang, S. Su, X. Feng, Q. Fan, W. Huang, Sens. Actuators B 2017, 246, 78.
- 16C. Xue, F. Cai, H. Liu, Chem. A Eur. J. 2008, 14(5), 1648.
- 17H. Zou, Z. Wang, M. Feng, J. Control. Release 2015, 214, 121.
- 18F. Surman, T. Riedel, M. Bruns, N. Y. Kostina, Z. Sedláková, C. Rodriguez-Emmenegger, Macromol. Biosci. 2015, 15(5), 636.
- 19M. Welch, A. Rastogi, C. Ober, Soft Matter 2011, 7(2), 297.
- 20M. Divandari, E. S. Dehghani, N. D. Spencer, S. N. Ramakrishna, E. M. Benetti, Polymer 2016, 98, 470.
- 21K. Y. Tan, H. Lin, M. Ramstedt, F. M. Watt, W. T. Huck, J. E. Gautrot, Integr. Biol. 2013, 5(6), 899.
- 22I. Buzzacchera, M. Vorobii, N. Y. Kostina, A. de los Santos Pereira, T. Riedel, M. Bruns, W. Ogieglo, M. Möller, C. J. Wilson, C. Rodriguez-Emmenegger, Biomacromolecules 2017, 18(6), 1983.
- 23S. Tugulu, H.-A. Klok, Biomacromolecules 2008, 9(3), 906.
- 24Y. Zhu, B. E. Lv, P. Zhang, H. Ma, Chem. Commun. 2011, 47(35), 9855.
- 25Y. Zhang, B. E. Lv, Z. Lu, J. A. He, S. Zhang, H. Chen, H. Ma, Soft Matter 2011, 7(24), 11496.
- 26D. Paripovic, H. A. Klok, Macromol. Chem. Phys. 2011, 212(9), 950.
- 27O. Borozenko, R. Godin, K. L. Lau, W. Mah, G. Cosa, W. G. Skene, S. Giasson, Macromolecules 2011, 44(20), 8177.
- 28D. Cimen, T. T. Kursun, T. Caykara, J. Polym. Sci. Part A: Polym. Chem. 2014, 52(24), 3586.
- 29A. M. Alswieleh, N. Cheng, I. Canton, B. Ustbas, X. Xue, V. Ladmiral, S. Xia, R. E. Ducker, O. El Zubir, M. L. Cartron, J. Am. Chem. Soc. 2014, 136(26), 9404.
- 30K. A. Melzak, K. Yu, D. Bo, J. N. Kizhakkedathu, J. L. Toca-Herrera, Langmuir 2015, 31(23), 6463.
- 31C. J. Galvin, E. D. Bain, A. Henke, J. Genzer, Macromolecules 2015, 48(16), 5677.
- 32N. C. Ataman, H.-A. Klok, Macromolecules 2016, 49(23), 9035.
- 33W.-L. Chen, M. Menzel, T. Watanabe, O. Prucker, J. Rühe, C. K. Ober, Langmuir 2017, 33(13), 3296.
- 34H.-A. Klok, J. Genzer, ACS Macro Lett. 2015, 4(6), 636.
- 35R. Quintana, M. Gosa, D. Jańczewski, E. Kutnyanszky, G. J. Vancso, Langmuir 2013, 29(34), 10859.
- 36I. E. Dunlop, R. K. Thomas, S. Titmus, V. Osborne, S. Edmondson, W. T. Huck, J. Klein, Langmuir 2012, 28(6), 3187.
- 37Y. Tran, P. Auroy, L. Lee, Macromolecules 1999, 32(26), 8952.
- 38M. Biesalski, D. Johannsmann, J. Rühe, J. Chem. Phys. 2002, 117(10), 4988.
- 39B. Zhao, W. J. Brittain, Prog. Polym. Sci. 2000, 25(5), 677.
- 40P. Atkins, J. De Paula, Elements of Physical Chemistry; Oxford University Press: Oxford, 2013.
- 41S. W. Schmidt, A. Kersch, M. K. Beyer, H. Clausen-Schaumann, Phys. Chem. Chem. Phys. 2011, 13(13), 5994.
- 42M. Patra, P. Linse, Nano Lett. 2006, 6(1), 133.
- 43W.-K. Lee, M. Patra, P. Linse, S. Zauscher, Small 2007, 3(1), 63.
- 44A. M. Jonas, Z. Hu, K. Glinel, W. T. Huck, Macromolecules 2008, 41(19), 6859.
- 45S. S. Sheiko, S. Panyukov, M. Rubinstein, Macromolecules 2011, 44(11), 4520.
- 46S. Panyukov, E. B. Zhulina, S. S. Sheiko, G. C. Randall, J. Brock, M. Rubinstein, J. Phys. Chem. B. 2009, 113(12), 3750.
- 47M. Ruths, D. Johannsmann, J. Rühe, W. Knoll, Macromolecules 2000, 33(10), 3860.
- 48O. Prucker, J. Rühe, Macromolecules 1998, 31(3), 592.
- 49M. Biesalski, J. Rühe, Macromolecules 1999, 32(7), 2309.
- 50W.-L. Chen, M. Menzel, O. Prucker, E. Wang, C. K. Ober, J. Rühe, Macromolecules 2017, 50(12), 4715.
- 51M. Biesalski, J. Rühe, Langmuir 1999, 16(4), 1943.
- 52R. Dong, S. Krishnan, B. A. Baird, M. Lindau, C. K. Ober, Biomacromolecules 2007, 8(10), 3082.
- 53O. Prucker, J. Rühe, Macromolecules 1998, 31(3), 602.
- 54R. Konradi, J. Rühe, Macromolecules 2004, 37(18), 6954.
- 55K. Simancas, Entropic Death of Polyelectrolyte Brushes: Chain Stretching, Bond Scission and Surfactant Complexation; Der Andere Verlag: Uelvesbüll, 2011.
- 56R. Israels, F. Leermakers, G. Fleer, E. Zhulina, Macromolecules 1994, 27(12), 3249.
- 57M. Biesalski, D. Johannsmann, J. Rühe, J. Chem. Phys. 2004, 120(18), 8807.
- 58R. M. Fuoss, U. P. Strauss, J. Polym. Sci. 1948, 3(2), 246.
- 59U. P. Strauss, N. L. Gershfeld, H. Spiera, J. Am. Chem. Soc. 1954, 76(23), 5909.
- 60M. Beer, M. Schmidt, M. Muthukumar, Macromolecules 1997, 30(26), 8375.
- 61S. Arrhenius, Z. Phys. Chem. 1889, 4(1), 226.
10.1515/zpch-1889-0116 Google Scholar
- 62V. Bershtein, L. Egorova, V. Solov'ev, Mech. Comp. Mater. 1977, 13(5), 715.
- 63S. W. Schmidt, M. F. Pill, A. Kersch, H. Clausen-Schaumann, M. K. Beyer, Faraday Discuss. 2014, 170, 357.
- 64R. Jones, R. Richards, Polymers at Surfaces and Interfaces; Cambridge University Press: Cambridge, UK, 1999.
10.1017/CBO9780511623196 Google Scholar
- 65A. F. Terzis, D. N. Theodorou, A. Stroeks, Macromolecules 2002, 35(2), 508.
- 66R. S. Hoy, G. S. Grest, Macromolecules 2007, 40(23), 8389.
- 67S. Koltzenburg, M. Maskos, O. Nuyken, R. Mülhaupt, Polymere: Synthese, Eigenschaften und Anwendungen; Springer: Berlin Heidelberg, 2014.
10.1007/978-3-642-34773-3 Google Scholar
- 68Z. Luo, X. Wang, G. Zhang, Phys. Chem. Chem. Phys. 2012, 14(19), 6812.
- 69A. Das, S. Ghosh, Angew. Chem. Int. Ed. 2014, 53(8), 2038.