Preparation of perfluoro-1,3-propanedisulfonic acid/Nafion/silica hybrid nanoparticles—thermally stable Nafion in these silica hybrid nanoparticles even after calcination at 800 °C
Saki Soma
Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan
Search for more papers by this authorYohei Mizuguchi
Research and Development Division, Nippon Chemical Industrial Co., Ltd., Koto-ku, Tokyo, 136-8515 Japan
Search for more papers by this authorMasashi Sugiya
Research and Development Division, Nippon Chemical Industrial Co., Ltd., Koto-ku, Tokyo, 136-8515 Japan
Search for more papers by this authorCorresponding Author
Hideo Sawada
Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan
Correspondence to: H. Sawada (E-mail: [email protected])Search for more papers by this authorSaki Soma
Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan
Search for more papers by this authorYohei Mizuguchi
Research and Development Division, Nippon Chemical Industrial Co., Ltd., Koto-ku, Tokyo, 136-8515 Japan
Search for more papers by this authorMasashi Sugiya
Research and Development Division, Nippon Chemical Industrial Co., Ltd., Koto-ku, Tokyo, 136-8515 Japan
Search for more papers by this authorCorresponding Author
Hideo Sawada
Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki, 036-8561 Japan
Correspondence to: H. Sawada (E-mail: [email protected])Search for more papers by this authorABSTRACT
Perfluoro-1,3-propanedisulfonic acid (PFPS)/Nafion/silica hybrid particles were prepared by the sol–gel reactions of PFPS with tetraethoxysilane and silica nanoparticles in the presence of Nafion under alkaline conditions. These obtained composites exhibited a good dispersibility and stability in not only water but also traditional organic media such as methanol, ethanol, 1,2-dichloroethane, tetrahydrofuran, and dimethyl sulfoxide. Dynamic light scattering measurements and field-emission scanning electron microscopy show that these hybrid particles are nanometer size-controlled fine particles before and even after calcination at 800 °C. Nafion/silica hybrid nanoparticles were also prepared in the absence of PFPS under similar conditions. The weight of original Nafion markedly dropped around 350 °C and decomposed gradually, reaching 0% around 450 °C, and Nafion in the Nafion/silica nanocomposites exhibited a similar weight loss behavior to that of the original one. However, Nafion/PFPS/silica hybrid nanoparticles were found to exhibit no weight loss corresponding to the contents of Nafion and PFPS in the silica gel matrices even after calcination at 800 °C. It was demonstrated that the pH value (3.77 at 25 °C) of Nafion/PFPS/silica hybrid nanoparticles after calcination is smaller than that (5.66 at 25 °C) before calcination, and this hybrid nanoparticles exhibited a higher proton conductivity (5.8 × 10−3 S/cm at 85 °C) than that (4.1 × 10−3 S/cm at 85 °C) before calcination. In addition, Nafion/PFPS/silica hybrid nanoparticles after calcination at 800 °C were applied to the Friedel-Crafts acylation of thiophene with acetic anhydride to give the expected 2-acetylthiophene, of whose yield was similar to that before calcination under similar conditions. These findings suggest that Nafion in PFPS/silica hybrid nanoparticle cores should exhibit a nonflammable characteristic even after calcination at 800 °C to act as an effective acid catalyst. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1869–1877
REFERENCES AND NOTES
- 1 G. Alberti, R. Narducci, M. L. Di Vona, S. Giancola, Fuel Cells 2013, 13, 42–47.
- 2 H. F. M. Mohamed, Y. Kobayashi, C. S. Kuroda, A. Ohira, Macromol. Chem. Phys. 2011, 212, 708–709.
- 3 A. V. Anantaraman, C. L. Gardner, J. Electroanal. Chem. 1996, 414, 115–120.
- 4 J.-D. Kim, Y. Oba, M. Ohnuma, T. Mori, C. Nishimura, I. Honma, Solid State Ionics 2010, 181, 1098–1102.
- 5 G. A. Olah, P. S. Iyer, G. K. S. Prakash, Synthesis 1986, 513–531.
- 6 H. Konishi, K. Suetsugu, T. Okano, J. Kiji, Bull. Chem. Soc. Jpn. 1982, 55, 957–958.
- 7 G. A. Olah, T. Mathew, G. K. S. Prakash, Chem. Commun. 2001, 1696–1697.
- 8 K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535–4585.
- 9 J. L. Zhang, Z. Xie, J. J. Zhang, Y. H. Tang, C. J. Song, T. Navessin, Z. Q. Shi, D. T. Song, H. J. Wang, D. P. Wilkinson, Z. S. Liu, S. Holdcroft, J. Power Sources 2006, 160, 872–891.
- 10 Y. Iwai, T. Yamanishi, Polym. Degrad. Stab. 2009, 94, 679–687.
- 11 J. Surowiec, R. Bogoczek, J. Therm. Anal. 1988, 33, 1097–1102.
- 12 Q. Deng, C. A. Wilkie, R. B. Moore, K. A. Mauritz, Polymer 1998, 39, 5961–5972.
- 13 S. K. Tiwari, S. K. Nema, Y. K. Agarwal, Thermochim. Acta 1998, 317, 175–182.
- 14 S. J. Shin, A. I. Balabanovich, H. Kim, J. Jeong, J. Song, H. T. Kim, J. Power Sources 2009, 191, 312–319.
- 15 P. Judeinstein, C. Sanchez, J. Mater. Chem. 1996, 6, 511–525.
- 16 J. Wen, G. L. Wilkes, Chem. Mater. 1996, 8, 1667–1681.
- 17 R. M. Laine, C. Sanchez, C. J. Brinker, E. Giannelis, Organic–Inorganic Hybrid Materials; Materials Research Society: Warrendale, PA, USA, 1998.
- 18
C. J. Brinker,
G. W. Scherer, Sol–Gel Science; Academic: Boston, 1990.
10.1016/B978-0-08-057103-4.50013-1 Google Scholar
- 19 M. Misra, A. Guest, M. Tilley, Surf. Coat. Int. 1998, 81, 594–595.
- 20 Z. Hua, K.-Y. Qiu, Polymer 1997, 31, 521–526.
- 21 M. A. S. Pedroso, M. L. Dias, R. A. S. San Gil, C. G. Mothe, Colloid Polym. Sci. 2003, 281, 19–26.
- 22 L. Matejka, J. Plestil, Macromol. Symp. 1997, 122, 191–196.
- 23
N. Juangvanich,
K. A. Maurite, J. Appl. Polym. Sci. 1998, 67, 1799–1810.
10.1002/(SICI)1097-4628(19980307)67:10<1799::AID-APP13>3.0.CO;2-S CAS Web of Science® Google Scholar
- 24 J. Pan, H. Zhang, M. Pan, J. Colloids Interface Sci. 2008, 326, 55–60.
- 25 M. A. Harmer, W. E. Farneth, Q. Sun, J. Am. Chem. Soc. 1996, 118, 7708–7715.
- 26 F. Martinez, G. Morales, A. Martin, R. van Grieken, Appl. Catal. A 2008, 347, 169–178.
- 27 H. Wang, B. Q. Xu, Appl. Catal. A 2004, 275, 247–255.
- 28 H. Wang, B. Q. Xu, M. H. Han, C. Xu, E. Z. Min, Chin. Chem. Lett. 2002, 13, 1121–1124.
- 29 T. Yamato, C. Hideshima, G. K. S. Prakash, G. A. Olah, J. Org. Chem. 1991, 56, 3955–3957.
- 30 A. Heidekum, M. Harmer, W. F. Holderich, Catal. Lett. 1997, 47, 243–246.
- 31 M. A. Harmer, Q. Sun, A. J. Vega, W. E. Farneth, A. Heidekum, W. F. Hoelderich, Green Chem. 2000, 7–14.
- 32 R. van Grieken, F. Martinez, G. Morales, A. Martin, Ind. Eng. Chem. Res. 2013, 57, 10145–10151.
- 33 J. Li, H. Tang, L. Chen, R. Chen, M. Pan, S. P. Jiang, Chem. Commun. 2013, 49, 6537–6539.
- 34 R. Jiang, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2006, 272, 116–124.
- 35 Y. Lin, C. Yen, C. M. Ma, S. Liao, C. Lee, Y. Hsiao, H. Lin, J. Power Sources 2007, 171, 388–395.
- 36 C. H. Park, H. K. Kim, C. H. Lee, H. B. Park, Y. M. Lee, J. Power Sources 2009, 194, 646–654.
- 37 J. Kim, S. Kim, K. Nam, D. Kim, J. Membr. Sci. 2012, 415, 696–701.
- 38 G. G. Kumar, A. R. Kim, K. S. Nahm, R. Elizabeth, Int. J. Hydrogen Energy 2009, 34, 9788–9794.
- 39 T. Kim, J. Lee, T. H. Yang, Y. G. Yoon, S. H. Park, S. D. Yim, RSC Adv. 2012, 2, 6957–6969.
- 40 J. Li, H. Tang, Z. Wang, M. Pan, J. Power Sources 2013, 234, 333–339.
- 41 M. A. Dresch, R. A. Isidoro, M. Linardi, J. F. Q. Rey, F. C. Fonseca, E. I. Santiago, Electrochim. Acta 2013, 94, 353–359.
- 42 J. Lee, C. W. Yi, K. Kim, Bull. Korean Chem. Soc. 2012, 33, 1788–1790.
- 43 R. V. Gummaraju, R. B. Moore, K. A. Mauritz, J. Polym. Sci. Part B: Polym. Phys. 1996, 34, 2383–2392.
- 44 R. Jiang, H. R. Kunz, J. M. Fenton, J. Membr. Sci. 2006, 272, 116–124.
- 45 P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, V. Antonucci, Solid State Ionics 1999, 125, 431–437.
- 46 P. Dimitrova, K. A. Friedrich, B. Vogt, U. Stimming, J. Electroanal. Chem. 2002, 532, 75–83.
- 47 V. D. Noto, N. Boaretto, E. Negro, G. Pace, J. Power Sources 2010, 195, 7734–7742.
- 48 C. Lin, T. Haolin, L. Junrui, P. Mu, Int. J. Energy Res. 2012, 37, 879–887.
- 49 S. P. Tung, B. J. Hwang, Fuel Cells 2007, 1, 32–39.
- 50 A. G. Kannan, N. R. Choudhury, N. K. Dutta, J. Membr. Sci. 2009, 333, 50–58.
- 51 L. Lou, H. Pu, Int. J. Hydrogen Energy 2011, 36, 3123–3130.
- 52 J. Lee, C. W. Yi, K. Kim, Bull. Korean Chem. Soc. 2012, 33, 1397–1400.
- 53 Z. Jie, T. Haolin, P. Mu, J. Membr. Sci. 2008, 312, 41–47.
- 54 L. Wang, B. L. Yi, H. M. Zhang, Y. H. Liu, D. M. Xing, Z. G. Shao, Y. H. Cai, J. Power Sources 2007, 164, 80–85.
- 55 S. P. Jiang, H. Tang, Colloids Surf. A 2012, 407, 49–57.
- 56
C. Lin,
T. Haolin,
P. Mu, Int. J. Hydrogen Energy 2012, 37, 4694–4698.
10.1016/j.ijhydene.2011.04.116 Google Scholar
- 57 Y. Treekamol, M. Schieda, L. Robitaille, S. M. Mackinnon, A. Mokrini, Z. Shi, S. Holdcroft, K. Schulte, S. P. Nunes, J. Power Sources 2014, 246, 950.
- 58 L. Wang, S. G. Advani, A. K. Prasad, Electrochim. Acta 2013, 105, 530–534.
- 59 N. Cele, S. S. Ray, Macromol. Mater. Eng. 2009, 294, 719–738.
- 60 M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, S. Sedghi, J. Power Sources 2012, 210, 350–357.
- 61 R. Gosalawit, S. Chirachanchai, H. Manuspiya, E. Traversa, Catal. Today 2006, 118, 259–265.
- 62 J. Yuan, G. Zhou, H. Pu, J. Membr. Sci. 2008, 325, 742–748.
- 63 J. Yuan, H. Pu, Z. Yang, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2647–2655.
- 64 M. Nogami, Y. Usui, T. Kasuga, Fuel Cells 2001, 1, 181–185.
- 65 H. Sawada, T. Narumi, A. Kajiwara, K. Ueno, K. Hamazaki, Colloid Polym. Sci. 2006, 284, 551–555.
- 66 H. Sawada, T. Narumi, S. Kodama, M. Kamijo, R. Ebara, M. Sugiya, Y. Iwasaki, Colloid Polym. Sci. 2007, 285, 977–983.
- 67 H. Sawada, M. Kikuchi, M. Nishida, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1070–1078.
- 68 H. Sawada, T. Tashima, S. Kodama, Polym. Adv. Technol. 2008, 19, 739–747.
- 69 H. Sawada, H. Kakehi, T. Tashima, Y. Nishiyama, M. Miura, N. Isu, J. Appl. Polym. Sci. 2009, 112, 3482–3487.
- 70 H. Sawada, T. Tashima, H. Kakehi, Y. Nishiyama, M. Kikuchi, M. Miura, Y. Sato, N. Isu, Polym. J. 2010, 42, 167–171.
- 71 H. Sawada, T. Tashima, Y. Nishiyama, M. Kikuchi, G. Kostov, Y. Goto, B. Ameduri, Macromolecules 2011, 44, 1114–1124.
- 72 H. Sawada, X. Liu, Y. Goto, M. Kikuchi, T. Tashima, M. Nishida, J. Colloids Interface Sci. 2011, 356, 8–15.
- 73 J. Lu, H. Tang, C. Xu, S. P. Jiang, J. Mater. Chem. 2012, 22, 5810–5819.
- 74 V. O. Gelmboldt, E. V. Ganin, M. S. Fonari, L. V. Koroeva, Y. E. Ivanov, M. M. Botoshansky, J. Fluorine Chem. 2009, 130, 428–433.
- 75 G. J. Reiß, Acta Crystallogr. 1998, C54, 1489–1491.
- 76 A. F. Jalbout, Z.-Y. Jiang, A. Ouasri, H. Jeghnou, A. Rhandour, M. C. Dhamelincourt, P. Dhamelincourt, A. Mazzah, Vib. Spectrosc. 2003, 33, 21–30.
- 77 B. D. Conley, B. C. Yearwood, S. Parkin, D. A. Atwood, J. Fluorine Chem. 2002, 115, 155–160.
- 78 V. O. Gelmboldt, E. V. Ganin, K. V. Domasevitch, Acta Crystallogr. 2007, C63, o530–o534.
- 79 A. F. Jalbout, A. Ouasri, H. Jeghnou, A. Rhandour, Vib. Spectrosc. 2007, 44, 94–100.
- 80 C. A. Mattia, O. Ortona, R. Puliti, G. Cascarano, C. Giacovazzo, J. Mol. Struct. 1995, 350, 63–69.
- 81 R. Thaimattam, M. Szafran, Z. Dega-Szafran, M. Jaskolski, Acta Crystallogr. 2008, B64, 483–490.