Supramolecular polymer gels formed from carboxy-terminated telechelic polybutadiene and polyamidine through amidinium-carboxylate salt bridge
Corresponding Author
Yoshio Furusho
Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820–8555 Japan
Correspondence to: Y. Furusho (E-mail: [email protected])Search for more papers by this authorTakeshi Endo
Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820–8555 Japan
Search for more papers by this authorCorresponding Author
Yoshio Furusho
Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820–8555 Japan
Correspondence to: Y. Furusho (E-mail: [email protected])Search for more papers by this authorTakeshi Endo
Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka, 820–8555 Japan
Search for more papers by this authorABSTRACT
In this article, we report the preparation and properties of the bulk supramolecular polymer gels prepared from a polybutadiene based on the amidinium-carboxylate salt bridge, highlighting the difference from a well-established network system based on carboxylic acid and amine. We have prepared the amidinium-carboxylate salt bridge-based supramolecular polymer gels from a carboxy-terminated telechelic polybutadiene and a linear polyamidine having N,N′-di-substituted acetamidine group in the main chain. FTIR analysis along with Small angle X-ray scattering measurements indicated that the salt bridge was attributed to the gelation through three-dimensional network formation. Virtually no fluidity was observed for the supramolecular gel containing equimolar amounts of the carboxyl group and the amidine group, which showed a high G′ value of about 1 MPa at room temperature and a Tgel of 37 °C. For comparison, the supramolecular polymer gels crosslinked by ammonium-carboxylate salt were prepared using a linear polyethyleneimine instead of the polyamidine. The gel with equimolar amounts of the carboxyl group and the secondary amino group showed liquid-like fluidity with a G′ value of about 0.01 MPa at room temperature, which was attributed to the fact that a certain amount of the carboxyl group remained as its free form without salt formation, as evidenced by FTIR analysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1815–1824
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
pola27187-sup-0001-suppinfo01.pdf1.1 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 P. Calza, C. Paze, E. Pelizzetti, A. Zecchina, Chem. Commun. 2001, 2130–2131.
- 2 S. Sivakova, S. J. Rowan, Chem. Soc. Rev. 2005, 34, 9–21.
- 3 T. Kato, N. Mizoshita, K. Kishimoto, Angew. Chem. Int. Ed. 2006, 45, 38–68.
- 4 R. Hoogenboom, D. Fournier, U. S. Schubert, Chem. Commun. 2008, 155–162.
- 5 E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195–6214.
- 6 A. Noro, M. Hayashi, Y. Matsushita, Soft Matter 2012, 8, 6416–6429.
- 7
L. R. Rieth,
R. F. Eaton,
G. W. Coates, Angew. Chem. Int. Ed. 2001, 40, 2153–2156.
10.1002/1521-3773(20010601)40:11<2153::AID-ANIE2153>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- 8 R. J. Thibault, P. J. Hotchkiss, M. Gray, V. M. Rotello, J. Am. Chem. Soc. 2003, 125, 11249–11252.
- 9 O. Colombani, C. Barioz, L. Bouteiller, C. Chanéac, L. Fompérie, F. Lortie, H. Montès, Macromolecules 2005, 38, 1752–1759.
- 10 C.-C. Peng, V. Abetz, Macromolecules 2005, 38, 5575–5580.
- 11 P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 2008, 451, 977–980.
- 12 K. E. Feldman, M. J. Kade, E. W. Meijer, C. J. Hawker, E. J. Kramer, Macromolecules 2009, 42, 9072–9081.
- 13 S. Li, H.-Y. Lu, Y. Shen, C.-F. Chen, Macromol. Chem. Phys. 2013, 214, 1596–1601.
- 14 T. Rossow, S. Hackelbusch, P. van Assenbergh, S. Seiffert, Polym. Chem. 2013, 4, 2515–2527.
- 15 M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
- 16 E. A. Appel, X. J. Loh, S. T. Jones, F. Biedermann, C. A. Dreiss, O. A. Scherman, J. Am. Chem. Soc. 2012, 134, 11767–11773.
- 17 Y. Okumura, K. Ito, Adv. Mater. 2001, 13, 485–487.
- 18 T. Oku, Y. Furusho, T. Takata, Angew. Chem. Int. Ed. 2004, 43, 966–969.
- 19 M. Müller, A. Dardin, U. Seidel, V. Balsamo, B. Iván, H. W. Spiess, R. Stadler, Macromolecules 1996, 29, 2577–2583.
- 20 R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe, E. W. Meijer, Science 1997, 278, 1601–1604.
- 21 K. S. Partridge, D. K. Smith, G. M. Dykes, P. T. McGrail, Chem. Commun. 2001, 319–320.
- 22 T. Suzuki, S. Shinkai, K. Sada, Adv. Mater. 2006, 18, 1043–1046.
- 23 W. H. Binder, L. Petraru, T. Roth, P. W. Groh, V. Palfi, S. Keki, B. Ivan, Adv. Funct. Mater. 2007, 17, 1317–1326.
- 24 A. Noro, Y. Matsushita, T. P. Lodge, Macromolecules 2008, 41, 5839–5844.
- 25 Z. Ge, J. Hu, F. Huang, S. Liu, Angew. Chem. Int. Ed. 2009, 48, 1798–1802.
- 26 A. Noro, Y. Matsushita, T. P. Lodge, Macromolecules 2009, 42, 5802–5810.
- 27 A. Noro, M. Hayashi, A. Ohshika, Y. Matsushita, Soft Matter 2011, 7, 1667–1670.
- 28 Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339–343.
- 29 J. B. Beck, S. J. Rowan, J. Am. Chem. Soc. 2003, 125, 13922–13923.
- 30
T. Ishikawa, Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons Ltd., New York, 2009.
10.1002/9780470740859 Google Scholar
- 31 S. Lie, T. Maris, C. Malveau, D. Beaudoin, F. Helzy, J. D. Wuest, Cryst. Growth Des. 2013, 13, 1872–1877.
- 32 F. Böhme, C. Klinger, H. Komber, L. Haubler, D. Jehnichen, J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 929–938.
- 33 F. Böhme, C. Klinger, C. Bellmann, Colloids Surf. A 2001, 189, 21–27.
- 34 A. V. Tenkovtsev, A. V. Yakimansky, M. M. Dudkina, V. V. Lukoshkin, H. Komber, L. Häussler, F. Böhme, Macromolecules 2001, 34, 7100–7107.
- 35 K. Sharavanan, H. Komber, F. Böhme, Macromol. Chem. Phys. 2002, 203, 1852–1858.
- 36 T. Endo, D. Nagai, T. Monma, H. Yamaguchi, B. Ochiai, Macromolecules 2004, 37, 2007–2009.
- 37 B. Ochiai, K. Yokota, A. Fujii, D. Nagai, T. Endo, Macromolecules 2008, 41, 1229–1236.
- 38 Y. Furusho, T. Endo, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3404–3411.
- 39 E. Yashima, K. Maeda, Y. Furusho, Acc. Chem. Res. 2008, 41, 1166–1180.
- 40 E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Chem. Rev. 2009, 109, 6102–6211.
- 41 Y. Furusho, E. Yashima, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5195–5207.
- 42 Y. Furusho, E. Yashima, Macromol. Rapid Commun. 2011, 32, 136–146.
- 43 Y. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2005, 44, 3867–3870.
- 44 M. Ikeda, Y. Furusho, K. Okoshi, S. Tanahara, K. Maeda, S. Nishino, T. Mori, E. Yashima, Angew. Chem. Int. Ed. 2006, 45, 6491–6495.
- 45 H. Katagiri, Y. Tanaka, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2007, 46, 2435–2439.
- 46 Y. Nakatani, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2010, 49, 5463–5467.
- 47 H. Yamada, Z.-Q. Wu, Y. Furusho, E. Yashima, J. Am. Chem. Soc. 2012, 134, 9506–9520.
- 48 D. Haldar, C. Schmuck, Chem. Soc. Rev. 2009, 38, 363–371.
- 49 J. R. Harjani, C. Liang, P. G. Jessop, J. Org. Chem. 2011, 76, 1683–1691.
- 50 D.-C. Huang, Y.-C. Lin, R.-C. Tsiang, J. Polym. Res. 1995, 2, 91–98.
- 51 Y. Cohen, L. Avram, L. Frish, Angew. Chem. Int. Ed. 2005, 44, 520–554.
- 52 K. E. Feldman, M. J. Kade, T. F. A. de Greef, E. W. Meijer, E. J. Kramer, C. J. Hawker, Macromolecules 2008, 41, 4694–4700.
- 53 A. Noro, A. Tamura, S. Wakao, A. Takano, Y. Matsushita, Macromolecules 2008, 41, 9277–9283.
- 54 A. Noro, H. Yamagishi, Y. Matsushita, Macromolecules 2009, 42, 6335–6338.