Synthesis of polymeric ionic liquid microsphere/Pt nanoparticle hybrids for electrocatalytic oxidation of methanol and catalytic oxidation of benzyl alcohol
Jianhu Yang
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorLihua Qiu
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorBaoqiang Liu
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorYingjing Peng
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorCorresponding Author
Feng Yan
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, ChinaSearch for more papers by this authorSongmin Shang
Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorJianhu Yang
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorLihua Qiu
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorBaoqiang Liu
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorYingjing Peng
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Search for more papers by this authorCorresponding Author
Feng Yan
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, ChinaSearch for more papers by this authorSongmin Shang
Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorAbstract
Herein, we present a facile approach for the synthesis of polymeric ionic liquids (PILs) microspheres for metal scavenging and catalysis. Crosslinked poly(1-butyl-3-vinylimidazolium bromide) microspheres with the diameter of about 200 nm were synthesized via miniemulsion polymerization, in which 1,4-di(vinylimidazolium) butane bisbromide was added as the crosslinker. Anion exchange of PIL microspheres with Pt precursor and followed by the reduction of Pt ions produced PIL microsphere supported Pt nanoparticle hybrids. The synthesized Pt nanoparticles with a diameter of about 2 nm are uniformly dispersed and strongly bound to the surface of PIL microspheres. The catalytic performances of PIL/Pt nanoparticle hybrids were evaluated for both the electrocatalytic oxidation of methanol and oxidation of benzyl alcohol. The PIL/Pt nanoparticle hybrids show better electrocatalytic activity towards the electrooxidation of methanol than pure Pt nanoparticles. Furthermore, they are effective and easily reusable catalysts for the selective oxidation of benzyl alcohol in aqueous reaction media, demonstrating that the synthesized PIL microspheres are suitable scaffolds for heterogeneous catalysts Pt. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011
REFERENCES AND NOTES
- 1(a) MacLachlan, M. J.; Ginzburg, M.; Coombs, N.; Coyle, T. W.; Raju, N. P.; Greedan, J. E.; Ozin, G. A.; Manners, I. Science 2000, 287, 1460–1463; (b) Daniel, M.; Astruc, D. Chem Rev 2004, 104, 293–346; (c) Buruda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem Rev 2005, 105, 1025–1102; (d) Wildgoose, G.; Banks, C. E.; Compton, R. G. Small 2006, 2, 182–193.
- 2(a) van Berkel, K. Y.; Piekarski, A. M.; Kierstead, P. H.; Pressly, E. D.; Ray, P. C.; Hawker, C. J. Macromolecules 2009, 42, 1425–1427; (b) Watt, J.; Cheong, S. S.; Toney, M. F.; Ingham, B.; Cookson, J.; Bishop, P. T.; Tilley, R. D. ACS Nano 2010, 4, 396–402.
- 3(a) Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2004, 20, 237–243; (b) Naka, K.; Itoh, H.; Chujo, Y. Nano Lett 2002, 2, 1183–1186; (c) Worden, J. G.; Dai, Q.; Huo, Q. Chem Commun 2006, 1536–1538; (d) Yeung, L.; Crooks, R. Nano Lett 2001, 1, 14–17; (e) Fahmi, A.; D'Aléo, A.; Williams, R. M.; Cola, L. D.; Gindy, N.; Vögtle, F. Langmuir 2007, 23, 7831–7835; (f) Albiter, M. A.; Zaera, F. Langmuir 2010, 26, 16204–16210.
- 4(a) Sakai, T.; Alexandridis, P. Langmuir 2004, 20, 8426–8430; (b) Ozkaraoglu, E.; Tunc, I.; Suzer, S. Polymer 2009, 50, 462–466; (c) Lee, J. H.; Mahmoud, M. A.; Sitterle, V. B.; Sitterle, J. J.; Meredith, J. C. Chem Mater 2009, 21, 5654–5663; (d) Pathak, S.; Greci, M. T.; Kwong, R. C.; Mercado, K.; Prakash, S. G. K.; Olah, G. A.; Thompson, M. E. Chem Mater 2000, 12, 1985–1989; (e) Liu, J.; Yao, J. F.; Wang, H. T.; Chan, K. Y. Green Chem 2006, 8, 386–389.
- 5(a) Zhang, J.; Xu, S.; Kumacheva, E. J Am Chem Soc 2004, 126, 7908–7914; (b) Jiang, X.; Xiong, D.; An, Y.; Zheng, P.; Zhang, W.; Shi, L. J Polym Sci Part A: Polym Chem 2007, 45, 2812–2819; (c) Hantzschel, N.; Zhang, F.; Eckert, F.; Pich, A.; Winnik, M. A. Langmuir, 2007, 23, 10793–10800; (d) Tamai, T.; Watanabe, M.; Hatanaka, Y.; Tsujiwaki, H.; Nishioka, N.; Matsukawa, K. Langmuir 2008, 24, 14203–14208; (e) Toledano, R.; Mandler, D. Chem Mater 2010, 22, 3943–3951.
- 6(a) Kauffman, D. R.; Tang, Y. F.; Kichambare, P. D.; Jackovitz, J. F.; Star, A. Energy Fuels 2010, 24, 1877–1881; (b) Ethirajan, A.; Ziener, U.; Landfester, K. Chem Mater 2009, 21, 2218–2225; (c) Akamatsu, K.; Adachi, S.; Tsuruoka, T.; Ikeda, S.; Tomita, S.; Nawafune, H. Chem Mater 2008, 20, 3042–3047; (d) Akasaka, S.; Mori, H.; Osaka, T.; Mareau, V. H.; Hasegawa, H. Macromolecules 2009, 42, 1194–1202; (e) Plante, I. J. L.; Habas, S. E.; Yuhas, B. D.; Gargas, D. J.; Mokari, T. Chem Mater 2009, 21, 3662–3667; (f) Han, J.; Liu, Y.; Li, L. Y.; Guo, R. Langmuir 2009, 25, 11054–11060.
- 7 Dokoutchaev, A.; James, J. T.; Koene, S. C.; Pathak, S.; Prakash, G. K. S.; Thompson, M. E. Chem Mater 1999, 11, 2389–2399.
- 8(a)
Chen, C. W.;
Serizawa, T.;
Akashi, M.
Chem Mater
1999,
11,
1381–1389;
(b)
Chen, C. W.;
Chen, M. Q.;
Serizawa, T.;
Akashi, M.
Adv Mater
1998,
10,
1122–1126;
10.1002/(SICI)1521-4095(199810)10:14<1122::AID-ADMA1122>3.0.CO;2-N CAS Web of Science® Google Scholar(c) Chen, C. W.; Serizawa, T.; Akashi, M. Chem Mater 2002, 14, 2232–2239.
- 9(a) Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L. Chem Mater 2008, 20, 2144–2150; (b) Li, S.; Wang, J.; Kou, Y.; Zhang, S. Chem Eur J 2010, 16, 1812–1818.
- 10(a) Mei, Y.; Sharma, G.; Lu, Y.; Ballauf, M.; Drechsler, M.; Irrgang, T.; Kempe, R. Langmuir 2005, 21, 12229–12234; (b) Lu, Y.; Mei, Y.; Drechsler, M.; Ballauf, M. Angew Chem Int Ed 2006, 45, 813–816; (c) Mei, Y.; Lu, Y.; Polzer, F.; Ballauf, M.; Drechsler, M. Chem Mater 2007, 19, 1062–1069; (d) Lu, Y.; Mei, Y.; Schriinner, M.; Ballauf, M.; Möller, M. W.; Breu, J. J Phys Chem C 2007, 111, 7676–7681.
- 11(a) Schuetz, P.; Caruso, F. Chem Mater 2004, 16, 3066–3073; (b) Wang, Y.; Alexandra, S.; Angelatos, A. S.; Caruso, F. Chem Mater 2008, 20, 848–858.
- 12(a) Lu, J.; Yan, F.; Texter, J. Prog Polym Sci 2009, 34, 431–448; (b) Diao, H.; Yan, F.; Qiu, L.; Lu, J.; Lu, X.; Lin, B.; Li, Q.; Shang, S.; Liu, W.; Liu, J. Macromolecules 2010, 43, 6398–6405; (c) Yan, F.; Yu, S.; Zhang, X.; Qiu, L.; Chu, F.; You, J.; Lu, J. Chem Mater 2009, 21, 1480–1484; (d) Yuan, J.; Antonietti, M. Macromolecules 2011, 44, 744–750.
- 13(a) Lin, B.; Qiu, L.; Lu, J.; Yan, F. Chem Mater 2010, 22, 6718–6725; (b) Marcilla, R.; Sanchez-Paniagua, M.; Lopez-Ruiz, B.; Cabarcos, E.; Ochoteco, E.; Grande, H.; Mecerreyes, D. J Polym Sci Part A: Polym Chem 2006, 44, 3958–3965.
- 14 Zhao, J.; Yan, F.; Chen, Z.; Diao, H.; Chu, F.; Yu, S.; Lu, J. J Polym Sci Part A: Polym Chem 2009, 47, 746–753.
- 15 Gu, Y. S.; Hou, X. M.; Hua, H. Y.; Yu, B.; Wang, L. X.; Zhou, F. Mater Chem Phys 2009, 116, 284–288.
- 16 Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Wan, L. J.; Song, W. G. J Phys Chem C 2007, 111, 11174–11179.
- 17(a) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E. W. J Phys Chem B 2005, 109, 22958–22966; (b) Guo, S. J.; Zhai, J. F.; Fang, Y. X.; Dong, S. J.; Wang, E. K. Chem Asian J 2008, 3, 1156–1162.
- 18(a) Wu, B. H.; Hu, D.; Kuang, Y. J.; Liu, B.; Zhang, X. H.; Chen, J. H. Angew Chem Int Ed 2009, 48, 4751–4754; (b) Guo, S.; Dong, S.; Wang, E. Adv Mater 2010, 22, 1269–1272.
- 19 Zhou, Y.; Chen, J.; Wang, F.; Sheng, Z.; Xia, X. Chem Commun 2010, 5951–5953.
- 20(a) Li, J.; Lin, X. J Electrochem Soc 2007, 154, B1074–B1079; (b) Santhosh, P.; Gopalan, A.; Lee, K. P. J Catal 2006, 238, 177–185; (c) Niu, L.; Li, Q.; Wei, F. H.; Wu, S. X.; Liu, P. P.; Cao, X. L. J Electroanal Chem 2005, 578, 331–337.
- 21(a) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett 1998, 39, 5323–5326; (b) Keresszegi, C.; Ferri, D.; Mallat, T.; Baiker, A. J Phys Chem B 2005, 109, 958–967; (c) Das, S.; Punniyamurthy, T. Tetrahedron Lett 2003, 44, 6033–6035; (d) Luca, L. D.; Giacomelli, G.; Masala, S.; Porcheddu, A. J Org Chem 2003, 68, 4999–5001; (e) Abad, A.; Conception, P.; Corma, A.; Garcia, H. Angew Chem Int Ed 2005, 44, 4066–4069; (f) Choudhary, V. R.; Dumbre, D. K. Ind Eng Chem Res 2009, 48, 9471–9478.
- 22 Selvaraj, V.; Alagar, M. Electrochem Commun 2007, 9, 1145–1153.
- 23 Wu, T. B.; Jiang, T.; Hu, B. J.; Han, B. X.; He, J. L.; Zhou, X. S. Green Chem 2009, 11, 798–803.
- 24(a) Choudhary, V. R.; Dumbre, D. K. Ind Eng Chem Res 2009, 48, 9471–9478; (b) Liu, H. L.; Liu, Y. L.; Li, Y. W.; Tang, Z. Y.; Jiang, H. F. J Phys Chem C 2010, 114, 13362–13369; (c) Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Angew Chem Int Ed 2007, 46, 4151–4154; (d) Matsumoto, T.; Ueno, M.; Wang, N. W.; Kobayashi, S. Chem Asian J 2008, 3, 196–214.
- 25(a) Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. J Am Chem Soc 2005, 127, 9374–9375; (b) Yamada, Y. M. A.; Arakawa, T.; Hocke, H.; Uozumi, Y. Chem Asian J 2009, 4, 1092–1098.
- 26 Muldoon, M. J.; Gordon, C. M. J Polym Sci Part A: Polym Chem 2004, 42, 3865–3869.