Core-shell particles with glycopolymer shell and polynucleoside core via RAFT: From micelles to rods
Samuel Pearson
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Search for more papers by this authorNathan Allen
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Search for more papers by this authorCorresponding Author
Martina H. Stenzel
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, AustraliaSearch for more papers by this authorSamuel Pearson
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Search for more papers by this authorNathan Allen
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Search for more papers by this authorCorresponding Author
Martina H. Stenzel
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
Centre for Advanced Macromolecular Design, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, New South Wales 2052, AustraliaSearch for more papers by this authorAbstract
Amphiphilic block copolymers were synthesized via the reversible addition fragmentation chain transfer (RAFT) copolymerisation of 2-methacrylamido glucopyranose (MAG) and 5′-O-methacryloyl uridine (MAU). Homopolymerisations of both monomers using (4-cyanopentanoic acid)-4-dithiobenzoate (CPADB) proceeded with pseudo first order kinetics in a living fashion, displaying linear evolution of molecular weight with conversion and low PDIs. A bimodal molecular weight distribution was observed for PMAU at low conversions courtesy of hybrid behavior between living and conventional free radical polymerization. This effect was more pronounced when a PMAG macroRAFT agent was chain extended with MAU, however, in both cases, good control was attained once the main RAFT equilibrium was established. A stability study on PMAU found that its hydrolysis is diffusion controlled, and is accelerated at physiological pH compared with neutral conditions. Self-assembly of four block copolymers with increasing hydrophobic (PMAU) block lengths produced micelles, which demonstrated an increased tendency to form rods as the PMAU block length increased. Interestingly, none of the block copolymers were surface-active. An initial assessment of PMAU's ability to bind the nucleoside adenosine through base pairing was highly promising, with DSC measurements indicating that adenosine is fully miscible in the PMAU matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1706–1723, 2009
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
POLA_23275_sm_suppinformation.doc19.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES AND NOTES
- 1 Noureddini, S. C.; Krendelshchikov, A.; Simonenko, V.; Hedley, S. J.; Douglas, J. T.; Curiel, D. T.; Korokhov, N. Virus Res 2006, 116, 185–195.
- 2 Boyd, B. Expert Opin Drug Deliv 2008, 5, 69–85.
- 3 Katizawa, Y.; Kataoka, K. Adv Drug Deliv Rev 2002, 54, 203–222.
- 4 Mahmud, A.; Xiong, X.-B.; Aliabadi, H. M.; Lavasanifar, A. J Drug Target 2007, 15, 553–584.
- 5 Tong, R.; Cheng, J. Polymer Rev 2007, 47, 345–381.
- 6 Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Nat Nano 2007, 2, 249–255.
- 7 Nah, J.-W.; Yu, L.; Han, S.-O.; Ahn, C.-H.; Kim, S. W. J Control Release 2002, 78, 273–284.
- 8 Merdan, T.; Callahan, J.; Peterson, H.; Kunath, K.; Bakowsky, U.; Kopeckova, P. Bioconjug Chem 2003, 14, 989–996.
- 9 Wakebayashi, D.; Nishiyama, N.; Yamasaki, Y.; Ikata, K.; Kanayama, N.; Harada, A. J Controll Release 2004, 95, 653–664.
- 10 Miura, Y. J Polym Sci Part A: Polymer Chemistry 2007, 45, 5031–5036.
- 11 Hashida, M.; Takemura, S.; Nishikawa, M.; Takakura, Y. J Control Release 1998, 53, 301.
- 12 Okada, M. Prog Polym Sci 2001, 26, 67–104.
- 13 Thoma, G.; Patton, J. T.; Magnani, J. L.; Ernst, B.; Ohrlein, R.; Duthaler, R. O. J Am Chem Soc 1999, 121, 5919–5929.
- 14 Spain, S. G.; Gibson, M. I.; Cameron, N. R. J Polym Sci Part A: Polymer Chemistry 2007, 45, 2059–2072.
- 15 Dupayage, L.; Save, M.; Dellacherie, E.; Nouvel, C.; Six, J.-L. J Polym Sci Part A: Polymer Chemistry 2008, 46, 7606–7620.
- 16 Loykulnant, S.; Hirao, A. Macromolecules 2000, 33, 4757–4764.
- 17 Bernard, J.; Schappacher, M.; Deffieux, A.; Viville, P.; Lazzaroni, R.; Charles, M. H.; Charreyre, M. T.; Delair, T. Bioconjug Chem 2006, 17, 6–14.
- 18 Aoi, K.; Tsutsumiuchi, K.; Okada, M. Macromolecules 1994, 27, 875–877.
- 19 Tsutsumiuchi, K.; Aoi, K.; Okada, M. Macromolecules 1997, 30, 4013–4017.
- 20 Fraser, C.; Grubbs, R. H. Macromolecules 1995, 28, 7248.
- 21 Mortell, K. H.; Gingras, M.; Kiessling, L. L. J Am Chem Soc 1994, 116, 12053.
- 22 Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.; Haddleton, D. M. J Am Chem Soc 2006, 128, 4823–4830.
- 23 Ting, S. R. S.; Granville, A. M.; Quémener, D.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Aust J Chem 2007, 60, 405–409.
- 24 Grande, D.; Baskaran, S.; Baskaran, C.; Gnanou, Y.; Chaikof, E. L. Macromolecules 2000, 33, 1123–1125.
- 25 Hou, S.; Sun, X. L.; Dong, C. M.; Chaikof, E. L. Bioconjug Chem 2004, 15, 954–959.
- 26 Sun, X.-L.; Faucher, K. M.; Houston, M.; Grande, D.; Chaikof, E. L. J Am Chem Soc 2002, 124, 7258–7259.
- 27 Matyjaszewski, K.; Xia, J. Chem Rev 2001, 101, 2921–2990.
- 28 Narain, R.; Armes, S. P. Macromolecules 2003, 36, 4675–4678.
- 29 Narain, R.; Armes, S. P. Biomacromolecules 2003, 4, 1746–1758.
- 30 Hawker, C. J.; Bosman, A. W.; Harth, E. Chem Rev 2001, 101, 3661–3688.
- 31 Barner, L.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Macromol Rapid Commun 2007, 28, 539–559.
- 32 Barner-Kowollik, C.; Davis, T. P.; Heuts, J. P. A.; Stenzel, M. H.; Vana, P.; Whittaker, M. J Polym Sci Part A: Polymer Chemistry 2003, 41, 365–375.
- 33 Favier, A.; Charreyre, M.-T. Macromol Rapid Commun 2006, 27, 653–692.
- 34 Moad, G.; Rizzardo, E.; Thang, S. H. Aust J Chem 2005, 58, 379–410.
- 35 Perrier, S.; Takolpuckdee, P. J Polym Sci Part A: Polymer Chemistry 2005, 43, 5347–5393.
- 36 Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L. Polymer 2003, 44, 6761–6765.
- 37 Albertin, L.; Cameron, N. R. Macromolecules 2007, 40, 6082–6093.
- 38 Albertin, L.; Kohlert, C.; Stenzel, M.; Foster, J. R.; Davis, T. P. Biomacromolecules 2004, 5, 255–260.
- 39 Albertin, L.; Stenzel, M.; Barner-Kowollik, C.; Foster, L. J. R.; Davis, T. P. Macromolecules 2004, 37, 7530–7537.
- 40 Albertin, L.; Stenzel, M. H.; Barner-Kowollik, C.; Foster, L. J. R.; Davis, T. P. Macromolecules 2005, 38, 9075–9084.
- 41 Guo, T.-Y.; Liu, P.; Zhu, J.-W.; Song, M.-D.; Zhang, B.-H. Biomacromolecules 2006, 7, 1196–1202.
- 42 Spain, S. G.; Albertin, L.; Cameron, N. R. Chem Commun 2006, 40, 4198–4200.
- 43 Al-Bagoury, M.; Buchholz, K.; Yaacoub, E.-J. Polymer Adv Tech 2007, 18, 313–322.
- 44 Bernard, J.; Favier, A.; Zhang, L.; Nilasaroya, A.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Macromolecules 2005, 38, 5475–5484.
- 45 Zhang, L.; Bernard, J.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Macromol Rapid Commun 2008, 29, 123–129.
- 46 Binder, W. H.; Kunz, M. J.; Kluger, C.; Hayn, G.; Saf, R. Macromolecules 2004, 37, 1749–1759.
- 47 Celiz, A. D.; Scherman, O. A. Macromolecules 2008, 41, 4115–4119.
- 48 Feldman, K. E.; Kade, M. J.; De Greef, T. F. A.; Meijer, E. W.; Kramer, E. J.; Hawker, C. J. Macromolecules 2008, 41, 4694–4700.
- 49 Yang, X.; Hua, F.; Yamato, K.; Ruckenstein, E.; Gong, B.; Kim, W.; Ryu, C. Y. Angew Chem Int Ed 2004, 43, 6471–6474.
- 50 Katizawa, Y.; Harada, A.; Kataoka, K. Biomacromolecules 2001, 2, 491–497.
- 51 Peterson, H.; Fechner, A. L.; Martin, A. L.; Kunath, K.; Stolnik, S.; Roberts, C. J.; Fischer, D.; Davies, M. C.; Kissel, T. Bioconjug Chem 2002, 13, 845–854.
- 52 Zhang, L.; Nguyen, T. L. U.; Bernard, J.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Biomacromolecules 2007, 8, 2890–2901.
- 53 Mao, Z.; Ma, L.; Yan, J.; Yan, M.; Gao, C.; Shen, J. Biomaterials 2007, 28, 4488–4500.
- 54 Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. J Control Release 2006, 114, 100–109.
- 55 Fan, H.; Kintagawa, M.; Raku, T.; Tokiwa, Y. Biochem Eng J 2004, 21, 279–283.
- 56 Granville, A. M.; Quemener, D.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Macromol Symp 2007, 255, 81–89.
- 57 Ambrosi, M.; Batsanov, A. S.; Cameron, N. R.; Davis, B. G.; Howard, J. A. K.; Hunter, R. J Chem Soc [Perkin 1] 2002, 1, 45–52.
- 58 Kitazawa, S.; Okumura, M.; Sakakibara, K. Chem Lett 1990, 1733–1736.
- 59 Mitsukami, Y.; Donovan, M. S.; Lowe, A. B.; McCormick, C. L. Macromolecules 2001, 34, 2248–2256.
- 60 Oae, S.; Yagihara, T.; Okabe, T. Tetrahedron 1972, 28, 3203–3216.
- 61
Mori, S.; Barth, H. G.
Size Exclusion Chromatography;
Springer:
New York,
1999.
10.1007/978-3-662-03910-6 Google Scholar
- 62 Bernard, J.; Hao, X.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Biomacromolecules 2006, 7, 232–238.
- 63 Klein, J.; Herzog, D.; Hajibegli, A. Macromol Chem Rapid Commun 1985, 6, 675–678.
- 64 Cao, L.; Bornscheuer, U. T.; Schmid, R. D. J Mol Catal B: Enzym 1999, 6, 279–285.
- 65 Thomas, D. B.; Convertine, A. J.; Hester, R. D.; Lowe, A. B.; McCormick, C. L. Macromolecules 2004, 37, 1735–1741.
- 66 Li, M.; De, P.; Gondi, S. R.; Sumerlin, B. S. J Polym Sci Part A: Polymer Chemistry 2008, 46, 5093–5100.
- 67 Saricilar, S.; Knott, R.; Barner-Kowollik, C.; Davis, T. P.; Heuts, J. P. A. Polymer 2003, 44, 5169–5176.
- 68 Theis, A.; Feldermann, A.; Charton, N.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Macromolecules 2005, 38, 2595–2605.
- 69 Barner-Kowollik, C.; Quinn, J. F.; Nguyen, T. L. U.; Heuts, J. P. A.; Davis, T. P. Macromolecules 2001, 34, 7849–7857.
- 70 Perrier, S.; Barner-Kowollik, C.; Quinn, J. F.; Vana, P.; Davis, T. P. Macromolecules 2002, 35, 8300–8306.
- 71 Charton, N.; Feldermann, A.; Theis, A.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. J Polym Sci Part A: Polymer Chemistry 2004, 42, 5170–5179.
- 72 Hurrell, S.; Milroy, G. E.; Cameron, R. E. Polymer 2003, 44, 1421–1424.
- 73 Halperin, A. Macromolecules 1987, 20, 2943–2946.
- 74 Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. Can J Chem 1999, 77, 1311–1326.
- 75 Iddon, P. D.; Robinson, K. L.; Armes, S. P. Polymer 2004, 45, 759–768.
- 76 Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938–9945.
- 77 Matsuoka, H.; Maeda, S. I.; Kaewsaiha, P.; Matsumoto, K. Langmuir 2004, 20, 7412–7421.
- 78 Matsuoka, H.; Matsutani, M.; Mouri, E.; Matsumoto, K. Macromolecules 2003, 36, 5321–5330.