Regioselective chain-straightening polymerization of α-olefins through 2,ω-enchainment using amine–imine nickel catalysts
Huiyun Deng
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorHeng Gao
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorHaotian Zhou
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorZonglin Qiu
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorCorresponding Author
Handou Zheng
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Correspondence
Haiyang Gao and Handou Zheng, School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Haiyang Gao
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Correspondence
Haiyang Gao and Handou Zheng, School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected] and [email protected]
Search for more papers by this authorHuiyun Deng
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorHeng Gao
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorHaotian Zhou
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorZonglin Qiu
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Search for more papers by this authorCorresponding Author
Handou Zheng
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Correspondence
Haiyang Gao and Handou Zheng, School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Haiyang Gao
School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou, China
Correspondence
Haiyang Gao and Handou Zheng, School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, DSAPM Lab, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected] and [email protected]
Search for more papers by this authorAbstract
The control of the regioselectivity of metal-catalyzed α-olefins polymerization is of everlasting interest. Most nickel and palladium catalysts show high regioselectivity involving 2,1-insertion of α-olefins and 1,ω-enchainment chain-straightening, especially α-diimine nickel catalysts. In this contribution, we report extremely rare regioselective chain-straightening polymerization of α-olefins through 2,ω-enchainment using unsymmetrical amine–imine nickel catalysts. The polymerizations of α-olefins (1-hexene, 1-octene, and 1-decene) were studied in detail, and the effects of catalyst structure, reaction temperature, and monomer concentration on the polymerization activity and the regioselectivity were examined. The unsymmetrical N-substituents of the amine–imine nickel catalysts play a crucial role in the regioselectivity. High regioselectivity involving 80.4% 1,2-insertion and 84.5% 2,ω-enchainment is realized to produce amorphous polyolefins without melting temperatures.
Graphical Abstract
REFERENCES
- 1L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc. 1995, 117, 6414.
- 2J. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc. 2006, 128, 4186.
- 3T. Vaidya, K. Klimovica, A. M. LaPointe, I. Keresztes, E. B. Lobkovsky, O. Dauguli, G. W. Coates, J. Am. Chem. Soc. 2014, 136, 7213.
- 4J. M. Eagan, O. Padilla-Vélez, K. S. O'Connor, S. N. MacMillan, A. M. LaPointe, G. W. Coates, Organometallics 2022, 41, 3411.
- 5L. Guo, S. Dai, X. Sui, C. Chen, ACS Cata. 2016, 6, 428.
- 6L. Guo, H. Gao, L. Li, Q. Wu, Macromol. Chem. Phys. 2011, 212, 2029.
- 7H. Gao, J. Pan, L. Guo, D. Xiao, Q. Wu, Polymer 2011, 52, 130.
- 8S. Dai, S. Zhou, W. Zhang, C. Chen, Macromolecules 2016, 49, 8855.
- 9A. Chen, D. Liao, C. Chen, Chin. J. Chem. 2022, 40, 215.
- 10Y. Zhang, X. Kang, Z. Jian, Nat. Commun. 2022, 13, 725.
- 11Q. Li, H. Mu, Z. Jian, Polym. Chem. 2023, 14, 3196.
- 12M. Liu, R. Zhang, Y. Ma, M. Han, G. A. Solan, W. Yang, T. Liang, W. H. Sun, Polym. Chem. 2022, 13, 1040.
- 13C. Wang, X. Kang, H. Mu, Z. Jian, Macromolecules 2022, 55, 5441.
- 14W. Lu, Y. Liao, S. Dai, J. Catal. 2022, 411, 54.
- 15M. Stefan, Angew. Chem., Int. Ed. 2001, 40, 534.
- 16D. H. Camacho, Z. Guan, Chem. Commun. 2010, 46, 7879.
- 17L. K. J. Steven, D. Ittel, M. Brookhart, Chem. Rev. 2000, 100, 1169.
- 18A. E. Cherian, E. B. Lobkovsky, G. W. Coates, Chem. Commun. 2003, 20, 2566.
- 19S. A. Svejda, L. K. Johnson, M. Brookhart, J. Am. Chem. Soc. 1999, 121, 10634.
- 20F. Liu, H. Gao, Z. Hu, H. Hu, F. Zhu, Q. Wu, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3859.
- 21H. Liao, J. Gao, L. Zhong, H.-Y. Gao, Q. Wu, Chin. J. Polym. Sci. 2019, 37, 959.
- 22G. J. Domski, E. B. Lobkovsky, G. W. Coates, Macromolecules 2007, 40, 3510.
- 23J. M. Rose, A. E. Cherian, J. H. Lee, L. A. Archer, G. W. Coates, L. J. Fetters, Macromolecules 2007, 40, 6807.
- 24D. N. Vaccarello, K. S. O'Connor, P. Iacono, J. M. Rose, A. E. Cherian, G. W. Coates, J. Am. Chem. Soc. 2018, 140, 6208.
- 25J. Gao, Z. Ying, L. Zhong, H. Liao, H. Gao, W. Qing, Polym. Chem. 2018, 9, 1109.
- 26L. Zhong, G. Li, G. Liang, H. Gao, Q. Wu, Macromolecules 2017, 50, 2675.
- 27S. Mecking, Coord. Chem. Rev. 2000, 203, 325.
- 28F. Z. Wang, C. L. Chen, Polym. Chem. 2019, 10, 2354.
- 29L. Zhong, H. Zheng, C. Du, W. Du, G. Liao, C. Cheung, H. Y. Gao, J. Catal. 2020, 384, 208.
- 30H. Deng, H. Zheng, C. S. Cheung, D. Li, H. Gao, Q. Lv, H. Gao, Eur. Polym. J. 2024, 202, 112626.
- 31H. Deng, H. Zheng, H. Gao, L. Pei, H. Gao, Catalysts 2022, 12, 936.
- 32H. Hu, L. Zhang, H. Gao, F. Zhu, Q. Wu, Chem. – Eur. J. 2014, 20, 3225.
- 33H. Zheng, L. Pei, H. Deng, H. Gao, H. Gao, Eur. Polym. J. 2023, 184, 111773.
- 34H. Gao, H. Hu, F. Zhu, Q. Wu, Chem. Commun. 2012, 48, 3312.
- 35H. Hu, D. Chen, H. Gao, L. Zhong, Q. Wu, Polym. Chem. 2016, 7, 529.
- 36L. Pei, F. Liu, H. Liao, J. Gao, L. Zhong, H. Gao, Q. Wu, ACS Catal. 2018, 8, 1104.
- 37H. Zheng, L. Zhong, C. Du, W. Du, C. S. Cheung, J. Ruan, H. Gao, Catal. Sci. Technol. 2021, 11, 124.
- 38L. Zhong, C. Du, G. F. Liao, H. Liao, H. D. Zheng, Q. Wu, H. Y. Gao, J. Catal. 2019, 375, 113.
- 39H. Zheng, Y. Li, W. Du, C. S. Cheung, D. Li, H. Gao, H. Deng, H. Gao, Macromolecules 2022, 55, 3533.
- 40S. Zhong, Y. Tan, L. Zhong, J. Gao, H. Liao, L. Jiang, H. Gao, Q. Wu, Macromolecules 2017, 50, 5661.
- 41F.-S. Liu, H.-B. Hu, Y. Xu, L.-H. Guo, S.-B. Zai, K.-M. Song, H.-Y. Gao, L. Zhang, F.-M. Zhu, Q. Wu, Macromolecules 2009, 42, 7789.
- 42J. L. Rhinehart, L. A. Brown, B. K. Long, J. Am. Chem. Soc. 2013, 135, 16316.
- 43M. Michael, F. Gerhard, Angew. Chem., Int. Ed. 2003, 24, 1001.
- 44C. M. Killian, D. J. Tempel, L. K. Johnson, M. Brookhart, J. Am. Chem. Soc. 1996, 118, 11664.
- 45A. C. Gottfried, M. Brookhart, Macromolecules 2003, 36, 3085.
- 46D. Tempel, C. M. Killian, L. K. Johnson, M. Brookhart, Macromolecules 2007, 40, 410.
- 47U. Subramanyam, P. R. Rajamohanan, S. Sivaram, Polymer 2004, 45, 4063.
- 48L. Guo, W. Liu, C. Chen, Mater. Chem. Front. 2017, 1, 2487.
- 49Y. Zhang, Y. Zhang, Z. Jian, Polymer 2023, 265, 125578.
- 50J. R. L. Kyle, S. O'Connor, T. Vaidya, I. Keresztes, K. Klimovica, A. M. LaPointe, O. Daugulis, G. W. Coates, Macromolecules 2017, 50, 7010.
- 51J. D. Azoulay, G. C. Bazan, G. B. Galland, Macromolecules 2010, 43, 2794.
- 52J. D. Azoulay, Y. Schneider, G. B. Galland, G. C. Bazan, Chem. Commun. 2009, 41, 6177.
10.1039/b912743g Google Scholar
- 53A. E. Cherian, J. M. Rose, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2005, 127, 13770.
- 54J. Merna, J. Cihlar, M. Kucera, A. Deffieux, H. Cramail, Eur. Polym. J. 2005, 41, 303.
- 55V. M. Mohring, C. Fink, Angew. Chem., Int. Ed. Engl. 1985, 24, 1001.
- 56H. Hu, H. Gao, D. Chen, G. Li, Y. Tan, G. Liang, F. Zhu, Q. Wu, ACS Catal. 2015, 5, 122.
- 57J. Liu, D. Chen, H. Wu, Z. Xiao, H. Gao, F. Zhu, Q. Wu, Macromolecules 2014, 47, 3325.
- 58L. Guo, W. Chen, W. Wang, W. An, S. Gao, Y. Zhao, M. Luo, G. He, T. Liu, J. Catal. 2022, 413, 8.
- 59J. Gao, L. Zhang, L. Zhong, C. Du, H. Liao, H. Y. Gao, Q. Wu, Polymer 2019, 164, 26.