Polymeric materials for solar water purification
Chuxin Lei
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorYouhong Guo
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorWeixin Guan
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorCorresponding Author
Guihua Yu
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Correspondence
Guihua Yu, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
Email: [email protected]
Search for more papers by this authorChuxin Lei
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorYouhong Guo
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorWeixin Guan
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Search for more papers by this authorCorresponding Author
Guihua Yu
Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas, USA
Correspondence
Guihua Yu, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
Email: [email protected]
Search for more papers by this authorChuxin Lei and Youhong Guo contributed equally to this work.
Funding information: Welch Foundation; Energy Institute
Abstract
Solar-based desalination or water purification is regarded as one of the promising solutions to global water scarcity as the only energy input is abundant and sustainable solar light. Interfacial solar vapor generation (SVG), which converts natural sunlight into clean water vapor, has attracted extensive research interests due to its high-energy utilization efficiency and simple implementation. With tunable molecular structures and tailorable physical properties, polymers have demonstrated great potential as candidate materials for solar evaporators. In this review, we summarize the recent progress on polymer materials for solar-powered water purification. First, we present functional polymers with highly tunable molecular composition and morphology as high-efficiency solar absorbers. Next, the recent development of various polymeric materials and structural engineering strategies for adequate water supply and efficient thermal management are discussed, along with their excellent desalination and purification performance. Last, we outline the challenges and future directions on the further development of polymer materials for solar water purification technologies.
Graphical Abstract
REFERENCES
- 1M. Elimelech, W. A. Phillip, Science 2011, 333, 712.
- 2M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, e1500323.
- 3R. Bain, R. Johnston, T. Slaymaker, npj Clean Water 2020, 3, 37.
- 4A. D. Khawaji, I. K. Kutubkhanah, J.-M. Wie, Desalination 2008, 221, 47.
- 5K. H. Mistry, M. A. Antar, J. H. Lienhard, Desalin. Water Treat. 2013, 51, 807.
- 6H. Tanaka, T. Nosoko, T. Nagata, Desalination 2000, 130, 279.
- 7A. A. Kiss, Advanced distillation technologies: design, control and applications, Chichester, West Sussex: John Wiley & Sons, 2013.
10.1002/9781118543702 Google Scholar
- 8R. Verbeke, V. Gomez, I. F. Vankelecom, Prog. Polym. Sci. 2017, 72, 1.
- 9 R. F. Service, Science 2006, 313, 1088.
- 10N. Ghaffour, T. M. Missimer, G. L. Amy, Desalination 2013, 309, 197.
- 11A. Ohmura, M. Wild, Science 2002, 298, 1345.
- 12X. Zhou, F. Zhao, P. Zhang, G. Yu, ACS Mater. Lett. 2021, 3, 1112.
- 13C. Li, Y. Goswami, E. Stefanakos, Renew. Sustainable Energy Rev. 2013, 19, 136.
- 14Y. Pang, J. Zhang, R. Ma, Z. Qu, E. Lee, T. Luo, ACS Energy Lett. 2020, 5, 437.
- 15X. Zhou, H. Lu, F. Zhao, G. Yu, ACS Mater. Lett. 2020, 2, 671.
- 16W. Shang, T. Deng, Nat. Energy 2016, 1, 1.
- 17H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Nat. Commun. 2014, 5, 1.
- 18X. Zhou, Y. Guo, F. Zhao, G. Yu, Acc. Chem. Res. 2019, 52, 3244.
- 19G. Ni, G. Li, S. V. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, Nat. Energy 2016, 1, 16126.
- 20F. Zhao, Y. Guo, X. Zhou, W. Shi, G. Yu, Nat. Rev. Mater. 2020, 5, 388.
- 21W Guan, Y Guo, G Yu, Small. 2021, 17, 2007176.
- 22Y. Guo, G. Yu, Acc. Mater. Res. 2021, 2, 374.
- 23X. Xu, J. Chen, J. Zhou, B. Li, Adv. Mater. 2018, 30, 1705544.
- 24Q. Peng, Y. Qin, X. Zhao, X. Sun, Q. Chen, F. Xu, Z. Lin, Y. Yuan, Y. Li, J. Li, ACS Appl. Mater. Interfaces 2017, 9, 44010.
- 25H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, Q. Fu, Prog. Polym. Sci. 2014, 39, 627.
- 26X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 2019, 5, aaw5484.
- 27Q. Jiang, H. G. Derami, D. Ghim, S. Cao, Y.-S. Jun, S. Singamaneni, J. Mater. Chem. A 2017, 5, 18397.
- 28Q. Chen, Z. Pei, Y. Xu, Z. Li, Y. Yang, Y. Wei, Y. Ji, Chem. Sci. 2018, 9, 623.
- 29C. Chen, Y. Kuang, L. Hu, Dent. J. 2019, 3, 683.
- 30X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, J. Zhu, Proc. Natl. Acad. Sci. 2016, 113, 13953.
- 31Y. Guo, C. Dundas, X. Zhou, K. Johnston, G. Yu, Adv. Mater. 2021, 33, 2102994.
- 32G. Wang, Y. Fu, A. Guo, T. Mei, J. Wang, J. Li, X. Wang, Chem. Mater. 2017, 29, 5629.
- 33T. Li, H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, Adv. Funct. Mater. 2018, 28, 1707134.
- 34X. Zhou, P. Zhang, F. Zhao, G. Yu, ACS Mater. Lett. 2020, 2, 1419.
- 35Y. Guo, Z. Fang, G. Yu, Polym. Int. 2021, 70, 1425.
- 36Y. Guo, X. Zhao, F. Zhao, Z. Jiao, X. Zhou, G. Yu, Energy Environ. Sci. 2020, 13, 2087.
- 37F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 2018, 13, 489.
- 38W. Xu, Y. Xing, J. Liu, H. Wu, Y. Cui, D. Li, D. Guo, C. Li, A. Liu, H. Bai, ACS Nano 2019, 13, 7930.
- 39Y. Shi, O. Ilic, H. A. Atwater, J. R. Greer, Nat. Commun. 2021, 12, 1.
- 40Y. Zou, X. Chen, P. Yang, G. Liang, Y. Yang, Z. Gu, Y. Li, Sci. Adv. 2020, 6, abb4696.
- 41F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, L. Hu, ACS Appl. Mater. Interf. 2018, 10, 1104.
- 42Y. Lu, D. Fan, Y. Wang, H. Xu, C. Lu, X. Yang. ACS Nano. 2021, 15, 10366.
- 43M. Gao, L. Zhu, C. K. Peh, G. W. Ho, Energy Environ. Sci. 2019, 12, 841.
- 44S. Cao, Q. Jiang, X. Wu, D. Ghim, H. G. Derami, P.-I. Chou, Y.-S. Jun, S. Singamaneni, J. Mater. Chem. A 2019, 7, 24092.
- 45Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 2015, 27, 4302.
- 46X. Li, R. Lin, G. Ni, N. Xu, X. Hu, B. Zhu, G. Lv, J. Li, S. Zhu, J. Zhu, Natl. Sci. Rev. 2018, 5, 70.
- 47J. Li, X. Zhou, P. Mu, F. Wang, H. Sun, Z. Zhu, J. Zhang, W. Li, A. Li, ACS Appl. Mater. Interfaces 2019, 12, 798.
- 48X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, Energy Environ. Sci. 2018, 11, 1985.
- 49Y. Tian, J. Zhang, S. Tang, L. Zhou, W. Yang, Small 2016, 12, 721.
- 50J. Chen, B. Li, G. Hu, R. Aleisa, S. Lei, F. Yang, D. Liu, F. Lyu, M. Wang, X. Ge, F. Qian, Q. Zhang, Y. Yin, Nano Lett. 2020, 20, 6051.
- 51Y. Wang, H.-M. Meng, G. Song, Z. Li, X.-B. Zhang, ACS Appl. Polym. Mater. 2020, 2, 4258.
- 52Y. Liu, K. Ai, L. Lu, Chem. Rev. 2014, 114, 5057.
- 53T. G. Barclay, H. M. Hegab, S. R. Clarke, M. Ginic-Markovic, Adv. Mater. Interfaces 2017, 4, 1601192.
- 54K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. 2009, 106, 6044.
- 55J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 2019, 119, 5298.
- 56L. Cai, A. Y. Song, W. Li, P.-C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, Y. Cui, Adv. Mater. 2018, 30, 1802152.
- 57J. Xu, C. Liu, P.-C. Hsu, K. Liu, R. Zhang, Y. Liu, Y. Cui, Nano Lett. 2016, 16, 1270.
- 58C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, M. Edirisinghe, Chem. Soc. Rev. 2012, 41, 4708.
- 59F. Wang, P. Mu, Z. Zhang, T. Chen, Y. Li, H. Sun, Z. Zhu, W. Liang, A. Li, Energy Technol. 2019, 7, 1900265.
- 60Y. Jin, J. Chang, Y. Shi, L. Shi, S. Hong, P. Wang, J. Mater. Chem. A 2018, 6, 7942.
- 61X.-J. Zha, X. Zhao, J.-H. Pu, L.-S. Tang, K. Ke, R.-Y. Bao, L. Bai, Z.-Y. Liu, M.-B. Yang, W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 36589.
- 62M. Zhu, Y. Li, G. Chen, F. Jiang, Z. Yang, X. Luo, Y. Wang, S. D. Lacey, J. Dai, C. Wang, C. Jia, J. Wan, Y. Yao, A. Gong, B. Yang, Z. Yu, S. Das, L. Hu, Adv. Mater. 2017, 29, 1704107.
- 63T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang, C. Jia, J. Song, E. M. Hitz, B. Liu, H. Huang, J. Yu, B. Yang, L. Hu, Small Methods 2019, 3, 1800176.
- 64H. Liu, Y. Liu, L. Wang, X. Qin, J. Yu, Carbon 2021, 177, 199.
- 65R. E. Abouzeid, R. Khiari, N. El-Wakil, A. Dufresne, Biomacromolecules 2019, 20, 573.
- 66A. W. Carpenter, C.-F. de Lannoy, M. R. Wiesner, Environ. Sci. Technol. 2015, 49, 5277.
- 67S. Wang, A. Lu, L. Zhang, Prog. Polym. Sci. 2016, 53, 169.
- 68K.-K. Liu, Q. Jiang, S. Tadepalli, R. Raliya, P. Biswas, R. R. Naik, S. Singamaneni, ACS Appl. Mater. Interfaces 2017, 9, 7675.
- 69X. Wu, G. Y. Chen, W. Zhang, X. Liu, H. Xu, Adv. Sustainable Syst. 2017, 1, 1700046.
- 70Y. Wang, H. Liu, C. Chen, Y. Kuang, J. Song, H. Xie, C. Jia, S. Kronthal, X. Xu, S. He, L. Hu, Adv. Sustainable Syst. 2019, 3, 1800055.
- 71J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen, T. Wu, Adv. Mater. 2017, 29, 1603730.
- 72S. Hong, Y. Shi, R. Li, C. Zhang, Y. Jin, P. Wang, ACS Appl. Mater. Interfaces 2018, 10, 28517.
- 73S. Cao, P. Rathi, X. Wu, D. Ghim, Y.-S. Jun, S. Singamaneni, Adv. Mater. 2021, 33, 2000922.
- 74F. Jiang, T. Li, Y. Li, Y. Zhang, A. Gong, J. Dai, E. Hitz, W. Luo, L. Hu, Adv. Mater. 2018, 30, 1703453.
- 75Y.-S. Jun, X. Wu, D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Acc. Chem. Res. 2019, 52, 1215.
- 76M.-Q. Yang, C. F. Tan, W. Lu, K. Zeng, G. W. Ho, Adv. Funct. Mater. 2020, 30, 2004460.
- 77X. Qian, Y. Zhao, Y. Alsaid, X. Wang, M. Hua, T. Galy, H. Gopalakrishna, Y. Yang, J. Cui, N. Liu, M. Marszewski, L. Pilon, H. Jiang, X. He, Nat. Nanotechnol. 2019, 14, 1048.
- 78S. He, C. Chen, Y. Kuang, R. Mi, Y. Liu, Y. Pei, W. Kong, W. Gan, H. Xie, E. Hitz, C. Jia, X. Chen, A. Gong, J. Liao, J. Li, Z. J. Ren, B. Yang, S. Das, L. Hu, Energy Environ. Sci. 2019, 12, 1558.
- 79A. C. Pierre, G. M. Pajonk, Chem. Rev. 2002, 102, 4243.
- 80H. D. Gesser, P. C. Goswami, Chem. Rev. 1989, 89, 765.
- 81L. Tian, J. Luan, K.-K. Liu, Q. Jiang, S. Tadepalli, M. K. Gupta, R. R. Naik, S. Singamaneni, Nano Lett. 2016, 16, 609.
- 82J. Yang, G.-Q. Qi, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, W. Yang, B.-H. Xie, M.-B. Yang, J. Mater. Chem. A 2016, 4, 9625.
- 83Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R. R. Naik, S. Singamaneni, Adv. Mater. 2016, 28, 9400.
- 84Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Chem. Rev. 2020, 120, 7642.
- 85F. Zhao, J. Bae, X. Zhou, Y. Guo, G. Yu, Adv. Mater. 2018, 30, 1801796.
- 86X. Zhou, Y. Guo, F. Zhao, W. Shi, G. Yu, Adv. Mater. 2020, 32, 2007012.
- 87M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Adv. Energy Mater. 2018, 8, 1701028.
- 88W. Li, Z. Li, K. Bertelsmann, D. E. Fan, Adv. Mater. 2019, 31, 1900720.
- 89Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Nano Lett. 2019, 19, 2530.
- 90N. Xu, X. Hu, W. Xu, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Mater. 2017, 29, 1606762.
- 91Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang, J. Song, C. Jia, E. M. Hitz, B. Yang, L. Hu, Nano Energy 2017, 41, 201.
- 92Y. Shi, C. Zhang, R. Li, S. Zhuo, Y. Jin, L. Shi, S. Hong, J. Chang, C. Ong, P. Wang, Environ. Sci. Technol. 2018, 52, 11822.
- 93Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, G. Yu, Adv. Mater. 2020, 32, 1907061.
- 94Y. Guo, X. Zhou, F. Zhao, J. Bae, B. Rosenberger, G. Yu, ACS Nano 2019, 13, 7913.
- 95X. Yang, Y. Yang, L. Fu, M. Zou, Z. Li, A. Cao, Q. Yuan, Adv. Funct. Mater. 2018, 28, 1704505.
- 96L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Adv. Mater. 2015, 27, 4889.
- 97G. Ni, S. Zandavi, S. Javid, S. Boriskina, T. Cooper, G. Chen, Science 2018, 11, 1510.
- 98W. Xu, X. Hu, S. Zhuang, Y. Wang, X. Li, L. Zhou, S. Zhu, J. Zhu, Adv. Energy Mater. 2018, 8, 1702884.
- 99Y. Kuang, C. Chen, S. He, E. M. Hitz, Y. Wang, W. Gan, R. Mi, L. Hu, Adv. Mater. 2019, 31, 1900498.
- 100D. Qi, Y. Liu, Y. Liu, Z. Liu, Y. Luo, H. Xu, X. Zhou, J. Zhang, H. Yang, W. Wang, X. Chen, Adv. Mater. 2020, 32, 2004401.
- 101C.-W. Nan, R. Birringer, D. R. Clarke, H. Gleiter, J. Appl. Phys. 1997, 81, 6692.
- 102M. Foygel, R. Morris, D. Anez, S. French, V. Sobolev, Phys. Rev. B 2005, 71, 104201.