Hydrolyses of terpenoid diphosphates. Effects of azide ion on products of hydrolysis
Maritza Alarcon
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorOsvaldo Cori
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorCorresponding Author
M. Cecilia Rojas
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
M. Cecilia Rojas, Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile===
Clifford A. Bunton, Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.===
Search for more papers by this authorHernan Pavez
Departamento de Quimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorRadu Bacaloglu
Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.
Search for more papers by this authorCorresponding Author
Clifford A. Bunton
Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.
M. Cecilia Rojas, Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile===
Clifford A. Bunton, Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.===
Search for more papers by this authorMaritza Alarcon
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorOsvaldo Cori
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorCorresponding Author
M. Cecilia Rojas
Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
M. Cecilia Rojas, Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile===
Clifford A. Bunton, Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.===
Search for more papers by this authorHernan Pavez
Departamento de Quimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
Search for more papers by this authorRadu Bacaloglu
Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.
Search for more papers by this authorCorresponding Author
Clifford A. Bunton
Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.
M. Cecilia Rojas, Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Santiago, Chile===
Clifford A. Bunton, Department of Chemistry, University of California, Santa Barbara, California 93106 U.S.A.===
Search for more papers by this authorAbstract
Hydrolysis of geranyl diphosphate (GPP) at pH 7 in water gives largely linalool (LOH) + geraniol (GOH) in the ratio of 3:1. Added N−3 generates mixed acylic allylic azides and increases the LOH GOH ratio to 15:1 in 2 M NaN3, but does not speed up the overall reaction. Hydrolysis of neryl diphosphate (NPP) gives largely α-terpineol (TOH) +p LOH, but their ratio is not very sensitive to NaN3 concentration although acyclic azide and small amounts of α-terpinyl azide (TN3) are formed. Hydrolysis of α-terpinyl diphosphate (TPP) gives large amounts of the cyclic alkenes, limonene and terpinolene. Added N−3 does not change the amount of elimination, but increases the ratio of limonene to terpinolene, and diverts some substitution product to TN3. Trapping of carbocationic species from GPP by N−3 is sharply increased by addition of Mn2+, which also catalyzes the overall reaction. Products of reaction of GPP are derived from acyclic intermediates and of NPP from acyclic and cyclic intermediates, and ionizations of the three substrates do not generate common carbocationic species.
References
- 1(a) F. Cramer and W. Rittersdorf, Tetrahedron 23, 3015 (1967); (b) W. Rittersdorf and F. Cramer, Tetrahedron 24, 43 (1968).
- 2(a) P. Valenzuela and O. Cori, Tetrahedron Lett. 3089 (1967); (b) B. C. Clark, T. S. Chamblee and G. A. Iacobucci, J. Org. Chem. 54, 1302 (1989).
- 3 K. B. Astin and M. C. Whiting, J. Chem. Soc., Perkin Trans. 2 1160 (1976).
- 4 C. A. Bunton, O. Cori, D. Hachey and J.-P. Leresche, J. Org. Chem. 44, 3238 (1979).
- 5(a) C. D. Poulter and C. R. King, J. Am. Chem. Soc 104, 1420 (1982); (b) C. D. Poulter and C. R. King, J. Am. Chem. Soc. 104, 1422 (1982); (c) V. Jo, R. T. Davisson, R. T. Neal and C. D. Poulter, J. Am. Chem. Soc. 107, 5277 (1985); (d) C. D. Poulter and D. S. Mautz, J. Am. Chem. Soc. 113, 4895 (1991).
- 6 J. A. Miller and H. C. Wood, Angew. Chem. 76, 301 (1964).
- 7 G. Portilla, M. C. Rojas, E. Chiong and O. Cori, J. Chem. Soc., Perkin Trans. 1 1479 (1987).
- 8(a) D. E. Cane, Tetrahedron 36, 1109 (1980); (b) D. E. Cane, Acc. Chem. Res. 18, 220 (1985); (c) D. V. Banthorpe, B. V. Charlwood and M. J. Francis, Chem. Rev. 72, 115 (1972); (d) R. Croteau, in Biosynthesis of Isoprenoid Compounds, edited by J. W. Porter and S. L. Spurgen, Vol. 1, pp. 284–374. Wiley, New York (1981).
- 9 C. D. Poulter, P. L. Wiggins and A. T. Le, J. Am. Chem. Soc. 103, 3926 (1981).
- 10 R. Croteau and F. Karp, Arch. Biochem. Biophys. 179, 257 (1977).
- 11 D. V. Banthorpe, P. N. Christon, C. R. Pink and D. G. Watson, Phytochemistry 22, 2465 (1983).
- 12 T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Chapt. 4. Harper and Row, New York (1987).
- 13(a) R. Ta-Shma and Z. Rappaport, Tetrahedron Lett. 23, 781 (1982); (b) R. Ta-Shma and Z. Rappoport, J. Am. Chem. Soc. 105, 6082, (1983).
- 14 J. Richard and W. P. Jencks, J. Am. Chem. Soc. 106, 1373, 1383 (1984).
- 15(a) W. P. Jencks, Catalysis in Chemistry and Enzymology, Chapt. 2. McGraw-Hill, New York (1969); (b) C. D. Ritchie, J. Am. Chem. Soc. 97, 1170 (1975).
- 16 D. N. Brems and H. C. Rilling, J. Am. Chem. Soc. 99, 8351 (1977).
- 17(a) M. V. Vial, C. Rojas, G. Portilla, L. Chayet, L. M. Perez, O. Cori and C. A. Bunton, Tetrahedron 37, 2351 (1981); (b) L. Chayet, M. C. Rojas, O. Cori, C. A. Bunton and D. C. McKenzie, Bioorg. Chem. 12, 329 (1984).
- 18 C. A. Bunton, J. P. Leresche and D. Hachey Tetrahedron Lett. 2431 (1972).
- 19(a) R. A. Sneen and W. A. Bradley, J. Am. Chem. Soc. 94, 6975 (1972); (b) R. A. Sneen and P. S. Kay, J. Am. Chem. Soc. 94, 6983 (1972).
- 20 O. Cori, L. Chayet, L. M. Perez, C. A. Bunton and D. Hachey, J. Org. Chem. 51, 1310 (1986).
- 21 A. Gagneux, S. Winstein and W. G. Young, J. Am. Chem. Soc. 82, 5956 (1960).
- 22 E. M. Kosower, An Introduction to Physical Organic Chemistry, p. 345. Wiley, New York (1968).
- 23(a) S. Winstein and G. C. Robinson, J. Am. Chem. Soc. 80, 169 (1958); (b) H. L. Goering, M. M. Pombo and K. D. McMichael, J. Am. Chem. Soc. 85, 965 (1963).
- 24(a) N. C. Deno, R. C. Haddon and E. N. Nowak, J. Am. Chem. Soc. 92, 6691 (1970); (b) N. L. Allinger and J. H. Siefert, J. Am. Chem. Soc. 97, 752 (1975).
- 25 T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Chapt. 7.2. Harper and Row, New York (1987).
- 26 T. W. Bentley and G. E. Carter, J. Am. Chem. Soc. 104, 5741 (1982); c.f., M. H. Abraham, R. W. Taft and M. J. Kamlet, J. Org. Chem. 41, 3053 (1981).
- 27 T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd ed., Chapt. 8.1. Harper and Row, New York (1987).
- 28 C. Tanford, The Hydrophobic Effect, 2nd ed. Wiley-Interscience, New York (1980).
- 29 R. H. Eastman and C. R. Noller, in Organic Chemistry, an Advanced Treatise, edited by H. Gilman, Vol. 4, p. 591. Wiley, New York (1953).
- 30 S. Winstein, G. Valkanas and C. F. Wilcox, J. Am. Chem. Soc. 94, 2286 (1972).
- 31 R. E. Eliel and D. E. Knox, J. Am. Chem. Soc. 107, 2946 (1985).
- 32 C. K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd ed. Cornell University Press, Ithaca, NY (1969).
- 33 W. V. E. Doering and H. H. Zeiss, J. Am. Chem. Soc. 75, 4733 (1953).