A theoretical evaluation for new fused remote N-heterocyclic silylenes (RNHSis) using density functional theory
Masoud Ghaghaei
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Mirzaagha Babazadeh
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Correspondence
Mirzaagha Babazadeh, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Email: [email protected]
Farnaz Behmagham, Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Farnaz Behmagham
Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran
Correspondence
Mirzaagha Babazadeh, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Email: [email protected]
Farnaz Behmagham, Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran.
Email: [email protected]
Search for more papers by this authorLadan Edjlali
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Search for more papers by this authorEsmail Vessally
Department of Chemistry, Payame Noor University, Tehran, Iran
Search for more papers by this authorMasoud Ghaghaei
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Search for more papers by this authorCorresponding Author
Mirzaagha Babazadeh
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Correspondence
Mirzaagha Babazadeh, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Email: [email protected]
Farnaz Behmagham, Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Farnaz Behmagham
Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran
Correspondence
Mirzaagha Babazadeh, Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Email: [email protected]
Farnaz Behmagham, Department of Chemistry, Miandoab Branch, Islamic Azad University, Miandoab, Iran.
Email: [email protected]
Search for more papers by this authorLadan Edjlali
Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Search for more papers by this authorEsmail Vessally
Department of Chemistry, Payame Noor University, Tehran, Iran
Search for more papers by this authorAbstract
In this research, we compare and contrast the stability, polarity, polarizability, band gap, and global reactivity of singlet (s) and triplet (t) fused benzene N-heterocyclic silylene (1-s and 1-t) along with five numbered congeners (2x-s, and 2x-t, x = CH2, SiH2, GeH2, NH, PH, AsH, O, S, and Se) at DFT (density functional theory). All singlet and triplet remote N-heterocyclic silylenes (RNHSis) appear as minima showing positive force constant. Every singlet RNHSi emerges as ground state and exhibits more stability than its corresponding triplet RNHSi. In going from 1-s to 2x-s species, the thermodynamic and kinetic stability is increased, so that higher ΔEs-t (= Et − Es) and higher band gap or ΔEHOMO–LUMO (=ELUMO − EHOMO) is considered for 2CH2-s, 2NH-s, and 2O-s structures. In going from second row to forth row of every group in the periodic table, electronegativity of heteroatoms have pronounced effect on the stability, polarity, polarizability, and band gap of 2x-s species. These silylenes show more stability than the synthesized silylene by Kira. Every 2x-t silylene shows higher nucleophilicity (about 1.6 times) than its corresponding 2x-s analogous. Every singlet RNHSi reveals lower nucleophilicity (N), higher electrophilicity (ω), chemical potential (μ), and global hardness (η) than its triplet congener. Furthermore, 2x-s silylenes benefit from stabilization effect of two heteroatoms synchronously in the fused five-membered ring via mesomeric effect and π donation from the lone pairs of heteroatom to the formally vacant 3p orbital of the silylenic center. Hence, we predict higher stability as well as lower global reactivity of RNHSis than Kira's silylene will make them creditable for the synthetic research.
Supporting Information
Filename | Description |
---|---|
poc4475-sup-0001-Revised-Supplementary-Material.docWord document, 56.5 KB |
Table S1. XYZ Cartesian coordinates of the studied singlet RNHSis, at B3LYP/AUG-cc-pVTZ level of theory. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a) M. Koohi, H. Bastami, J. Phys. Org. Chem. 2020, 33, e4023; b) E. Vessally, M. Nikoorazm, F. Esmaili, E. Fereyduni, J. Organomet. Chem. 2011, 696, 932.
- 2E. Vessally, L. Edjlali, H. Shabrendi, M. Rezaei, Russ. J. Phys. Chem. 2012, 86, 595.
- 3a) M. Z. Kassaee, M. Koohi, J. Phys. Org. Chem. 2013, 26, 540; b) M. Z. Kassaee, M. Koohi, R. Mohammadi, M. Ghavami, J. Phys. Org. Chem. 2013, 26, 908; c) M. Koohi, M. Z. Kassaee, B. N. Haerizade, M. Ghavami, S. Ashenagar, J. Phys. Org. Chem. 2015, 28, 514.
- 4a) M. Koohi, J. Phys. Org. Chem. 2019, 32, e4013; b) M. Koohi, J. Phys. Org. Chem. 2020, 33, e4032; c) M. Koohi, H. Bastami, Struct. Chem. 2020, 31, 877; d) M. Koohi, H. Bastami, Monatsh. Chem. – Chem. Month. 2020, 151, 11.
- 5a) A. Brück, D. Gallego, W. Wang, E. Irran, M. Driess, J. F. Hartwig, Angew. Chem., Int. Ed. 2012, 51, 11478; b) J. Li, S. Merkel, J. Henn, K. Meindl, A. Döring, H. W. Roesky, R. S. Ghadwal, D. Stalke, Inorg. Chem. 2009, 49, 775; c) C. Boehme, G. Frenking, Organometallics 1998, 17, 5801.
- 6a) T. A. Schmedake, M. Haaf, B. J. Paradise, A. J. Millevolte, D. R. Powell, R. West, J. Organomet. Chem. 2001, 636, 17;
b) W. Yang, H. Fu, H. Wang, M. Chen, Y. Ding, H. W. Roesky, A. Jana, Inorg. Chem. 2009, 48, 5058;
c) R. H. Heyn, T. D. Tilley, J. Am. Chem. Soc. 1917, 1992, 114;
d) A. Fürstner, H. Krause, C. W. Lehmann, Chem. Commun. 2001, 2372;
e) T. Yamada, A. Mawatari, M. Tanabe, K. Osakada, T. Tanase, Angew. Chemie 2009, 121, 576;
10.1002/ange.200804728 Google Scholarf) R. Waterman, P. G. Hayes, T. D. Tilley, Acc. Chem. Res. 2007, 40, 712.
- 7a) P. Jutzi, D. Kanne, C. Krüger, Angew. Chem., Int. Ed. Engl. 1986, 25, 164; b) M. Denk, R. Lennon, R. Hayashi, R. West, A. Haaland, H. Belyakov, P. Verne, M. Wagner, N. Metzler, J. Am. Chem. Soc. 1994, 116, 2691; c) R. West, M. Denk, Pure Appl. Chern. 1996, 68, 785; d) M. Kira, S. Ishida, T. Iwamoto, C. Kabuto, J. Am. Chem. Soc. 1999, 121, 9722.
- 8a) H. Zhao, D. Yang, Y. Zhou, Y. Fang, M. Shi, E. Vessally, J. Chin. Chem. Soc. 2020. https://doi.org/10.1002/jccs.202000247
b) K. Zhao, Y. Zhang, Y. Ma, Z. Jin, F. Rashid Sheykhahmad, J. Chin. Chem. Soc. 2020. https://doi.org/10.1002/jccs.202000296
c) P. D. K. Nezhad, L. Youseftabar-Miri, S. Ahmadi, S. Ebrahimiasl, E. Vessally, Struct. Chem.
d https://doi.org/10.1007/s11224-020-01650-5, 32, 787.
10.1007/s11224-020-01650-5 Google Scholare A. Hassanpour, M. R. Poor Heravi, Z. Rahmani, A. G. Ebadi, S. Ahmadi, J. Chin. Chem. Soc. 2021. https://doi.org/10.1002/jccs.202100051 f İ. Söğütlü, M. Soltanzadeh, H. Mert, N. Mert, E. Vessally, J. Mol. Struct. 2021, 1230, 129821; g M. Z. Kassaee, S. Arshadi, M. Acedy, E. Vessally, J. Organomet. Chem. 2005, 690, 3427.
- 9a) A. D. Becke, Phys. Rev. a 1988, 38, 3098; b) A. D. J. Becke, Chem. Phys. 1993, 98, 5648; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; d) J. A. Pople, R. K. Nesbet, J. Chem. Phys. 1954, 22, 571; e) P. C. Hariharan, J. A. Pople, Mol. Phys. 1974, 27, 209; f) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654; g) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 1983, 4, 294; h) M. J. Frisch, J. A. Pople, J. S. J. Binkley, Chem. Phys. 1984, 80, 3265; i) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41(2), 157; j) Y. Zhao, D. G. Truhlar, Theor. Chem. Account. 2008, 120, 215.
- 10a) C. Adamo, A. di Matteo, V. Barone, Adv. Quantum Chem. 1999, 36, 45; b) D. H. Ess, K. N. Houk, J. Phys. Chem. A 2005, 109, 9542; c) K. Ishimura, P. Pulay, S. Nagase, J. Comput. Chem. 2006, 27, 407; d) B. Champagne, E. A. Perpete, S. J. A. v. Gisbergen, E. J. Baerends, J. G. Snijders, C. Soubra-Ghaoui, K. A. Robins, B. Kirtman, J. Chem. Phys. 1998, 109, 10489.
- 11a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14(11), 1347; b) A. L. Sobolewski, W. Domcke, J. Phys. Chem. A 2002, 106, 4158.
- 12a) W. J. Hehre, L. Radom, P.v. R. Schleyer, J. A. Pople, Ab initio molecular orbital theory, John Wiley & Sons, NewYork 1986; b) J. B. Foresman, A. Frisch, Exploring chemistry with electronic structure methods, Gaussian, Inc., Pittsburgh. PA 1996.
- 13R. A. Kendall, T. H. Dunning Jr., R. J. J. Harrison, Chem. Phys. 1992, 96, 6796.
- 14a) J. P. Predew, Y. Wang, Phys. Rev. B 1992, 45, 13244; b) R. Peverati, Y. Zhao, D. G. Truhlar, J. Phys. Chem. Lett. 2011, 2(16), 1991; c) A. Karolewski, L. Kronik, S. Kümmel, J. Chem. Phys. 2013, 138, 204115; d) J. M. Smith, Y. J. Alahmadi, C. N. Rowley, J. Chem. Theory Comput. 2013, 9, 4860; e) Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theory Comput. 2013, 9(1), 263; f) F. Weinhold, J. Comput. Chem. 2012, 33, 2363; g) E. D. Glendening, C. R. Landis, F. Weinhold, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 1; h) G. Zhang, C. B. Musgrave, J. Phys. Chem. A 2007, 111, 1554.
- 15a) L. R. Domingo, E. Chamorro, P. J. Pérez, Organomet. Chem. 2008, 73, 4615; b) R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 1922, 1999, 121; c) R. G. Parr, R. G. Pearson, J. Am. Chem. Soc. 1983, 105, 7512; d) R. G. Parr, W. Yang, Density functional theory of atoms and molecules, Oxford University Press, New York, NY 1989.
- 16R. Hoffmann, P. V. R. Schleyer, H. F. Schaefer, Angew. Chem., Int. Ed. Engl. 2008, 47, 7164.
- 17J. A. Joule, K. Mills, Heterocyclic chemistry, 5th ed., Blackwell Publishing, Chichester 2010.