Theoretical aspects of tunneling proton transfer reactions in a polar environment
Corresponding Author
Philip M. Kiefer
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.===Search for more papers by this authorJames T. Hynes
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
CNRS UMR 8640, 24 rue Lhomond, Paris 75005, France
Search for more papers by this authorCorresponding Author
Philip M. Kiefer
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.===Search for more papers by this authorJames T. Hynes
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
CNRS UMR 8640, 24 rue Lhomond, Paris 75005, France
Search for more papers by this authorAbstract
This paper reviews some nontraditional theoretical views developed in this group on acid–base proton transfer (PT) reactions in hydrogen (H-) bonded systems, focusing on the tunneling regime. Key ingredients in this picture are a completely quantum character for the proton motion (even when tunneling does not occur), the identification of a solvent coordinate as the reaction coordinate, and attention to the H-bond vibrational ‘promoting’ mode in the acid–base complex. Attention is also given to the electronic structure rearrangements associated with PT in the electronically adiabatic regime. A general overview is presented for the tunneling rate constants including the activation free energy and the associated primary kinetic isotope effects (KIEs) for proton tunneling reactions. Copyright © 2010 John Wiley & Sons, Ltd.
REFERENCES
- 1 D. Borgis, J. T. Hynes, J. Phys. Chem. 1996, 100, 1118–1128.
- 2 D. Borgis, J. T. Hynes, Chem. Phys. 1993, 170, 315–346.
- 3 D. Borgis, S. Lee, J. T. Hynes, Chem. Phys. Lett. 1989, 162, 19–26.
- 4 D. Borgis, J. T. Hynes, J. Chem. Phys. 1991, 94, 3619.
- 5 S. Lee, J. T. Hynes, J. Chim. Phys. 1996, 99, 7557.
- 6 K. Ando, J. T. Hynes, J. Mol. Liq. 1995, 64, 25.
- 7 K. Ando, J. T. Hynes, J. Phys. Chem. B 1997, 101, 10464.
- 8 K. Ando, J. T. Hynes, J. Phys. Chem. A 1999, 103, 10398.
- 9 A. Staib, D. Borgis, J. T. Hynes, J. Chem. Phys. 1995, 102, 2487.
- 10 K. Ando, J. T. Hynes, Faraday Discuss. 1995, 102, 435.
- 11 K. Ando, J. T. Hynes, Adv. Chem. Phys. 1999, 110, 381.
- 12 P. M. Kiefer, J. T. Hynes, J. Phys. Chem. A 2002, 106, 1834.
- 13 P. M. Kiefer, J. T. Hynes, J. Phys. Chem. A 2002, 106, 1850.
- 14 P. M. Kiefer, J. T. Hynes, J. Phys. Chem. A 2003, 107, 9022.
- 15 P. M. Kiefer, J. T. Hynes, J. Phys. Chem. A 2004, 108, 11793.
- 16 P. M. Kiefer, J. T. Hynes, J. Phys. Chem. A 2004, 108, 11809.
- 17 J. J. Timoneda, J. T. Hynes, J. Phys. Chem. 1991, 95, 10431.
- 18 B. J. Gertner, J. T. Hynes, Faraday Discuss. 1998, 110, 301.
- 19
R. P. Bell,
The Proton in Chemistry,
2nd edn,
Cornell University Press,
Ithaca, NY,
1973.
10.1007/978-1-4757-1592-7 Google Scholar
- 20
E. Caldin,
V. Gold,
Proton Transfer Reactions,
Chapman and Hall,
London,
1975.
10.1007/978-1-4899-3013-2 Google Scholar
- 21 A. J. Kresge, Acc. Chem. Res. 1975, 8, 354–360
- 22 F. Hibbert, Adv. Phys. Org. Chem. 1986, 22, 113.
- 23 F. Hibbert, Adv. Phys. Org. Chem. 1990, 26, 255.
- 24
M. M. Kreevoy,
D. E. Konasewich,
Adv. Chem. Phys.
1972,
21,
243.
10.1002/9780470143698.ch17 Google Scholar
- 25 M. M. Kreevoy, S.-W. Oh, J. Am. Chem. Soc. 1973, 95, 4805.
- 26 A. J. Kresge, D. N. Silverman, Meth. Enz. 1999, 308, 276.
- 27 A. J. Kresge, H. J. Chen, Y. Chiang, J. Am. Chem. Soc. 1977, 99, 802.
- 28 A. J. Kresge, D. S. Sagatys, H. L. Chen, J. Am. Chem. Soc. 1977, 99, 7228.
- 29 D. J. McLennan, R. J. Wong, Aust. J. Chem. 1976, 29, 787.
- 30 I.-S. Lee, E. H. Jeoung, M. M. Kreevoy, J. Am. Chem. Soc. 2001, 123, 7492.
- 31 R. P. Bell, D. M. Goodall, Proc. Roy. Soc. Lond. A 1966, 294, 273–297.
- 32 J. E. Dixon, T. C. Bruice, J. Am. Chem. Soc. 1970, 92, 905–909.
- 33 W. A. Pryor, K. G. Kneipp, J. Am. Chem. Soc. 1971, 93 5584.
- 34 R. P. Bell, B. G. Cox, J. Chem. Soc. B 1971, 783–785.
- 35 F. G. Bordwell, W. J. Boyle, J. Am. Chem. Soc. 1975, 97, 3447.
- 36 Y. Cha, C. J. Murray, J. P. Klinman, Science 1989, 243, 1325.
- 37 A. Kohen, J. P. Klinman, Acc. Chem. Res. 1998, 31, 397–3404.
- 38 A. Kohen, J. P. Klinman, Chem. Biol. 1999, 6, R191.
- 39 A. Kohen, R. Cannio, S. Bartolucci, J. P. Klinman, Nature 1999, 399, 496.
- 40 T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd edn, Harper Collins Pubs., New York, 1987.
- 41 A. J. Kresge, in Isotope Effects on Enzyme-Catalyzed Reactions (Eds.: W. W. Cleland, M. H. O'Leary, D. B. Northrop), University Park Press, Baltimore, MD, 1977, p. 37.
- 42 L. Melander, W. H. Saunders, Reaction Rates of Isotopic Molecules, Wiley, New York, 1980.
- 43 F. H. Westheimer, Chem. Rev. 1961, 61, 265.
- 44 L. Melander, Isotope Effects on Reaction Rates, The Ronald Press Co., New York, 1960.
- 45
R. A. More O'Ferrall, in
Proton Transfer Reactions (Eds.: E. Caldin, V. Gold),
Chapman and Hall,
London,
1975, p.
201
10.1007/978-1-4899-3013-2_8 Google Scholar
- 46
R. P. Bell,
The Tunnel Effect in Chemistry,
Chapman and Hall,
NewYork,
1980.
10.1007/978-1-4899-2891-7 Google Scholar
- 47 R. P. Bell, W. H. Sachs, R. L. Tranter, Trans. Far. Soc. 1971, 67, 1995.
- 48 W. H. Saunders, J. Am. Chem. Soc. 1985, 107, 164.
- 49Calculations of KIEs derived from a classical reaction path (e.g. the MEP) in the presence of a solvent or polar environment typically add quantum corrections to that path [70–75]. Such a reaction path, however, includes classical motion of the proton, especially near the TS, and thus this technique exhibits no difference in quantum corrections between H and D at the TS for a symmetric reaction (ΔGRXN = 0) [71], in contrast to the present picture. In variational TS theory for gas phase H atom transfer, the TS significantly deviates from the MEP TS and is isotope-dependent [143]. This feature has been calculated for PT in an enzyme, where the KIE has been diminished because the TS position significantly differs between H and D even in a symmetric case [74].
- 50(For examples of the equilibrium solvation picture for PT in a complex system, see Refs [50–53]). P. A. Bash, M. J. Field, R. C. Davenport, G. A. Petsko, D. Ringe, M. Karplus, Biochemistry 1991, 30, 5826.
- 51 Q. Cui, M. Karplus, J. Am. Chem. Soc. 2001, 123, 2284.
- 52 C. Alhambra, J. Corchado, M. L. Sánchez, M. Garcia-Viloca, J. Gao, D. G. Truhlar, J. Phys. Chem. B 2001, 105, 11326.
- 53 Q. Cui, M. Elstner, M. Karplus, J. Phys. Chem. B 2002, 106, 2721.
- 54 R. R. Dogonadze, A. M. Kuznetzov, V. G. Levich, Electrochimica Acta 1968, 13, 1025.
- 55 E. D. German, A. M. Kuznetzov, R. R. Dogonadze, J. Chem. Soc. Farad. Trans. II 1980, 76, 1128.
- 56 A. M. Kuznetzov, Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory, Gordon and Breach Publishers, Amsterdam, 1995.
- 57 A. M. Kuznetzov, J. Ulstrup, Can. J. Chem. 1999, 77, 1085.
- 58 J. Sühnel, K. Gustav, Chem. Phys. 1984, 87, 179.
- 59 L. I. Trakhtenberg, V. L. Klochikhin, S. Ya. Pshezhetsky, Chem. Phys. 1982, 69, 121.
- 60 M. V. Basilevsky, A. Soudackov, M. V. Vener, Chem. Phys. 1995, 200, 87.
- 61 M. V. Basilevsky, M. V. Vener, G. V. Davidovich, A. Soudackov, Chem. Phys. 1996, 208. 267.
- 62 M. V. Vener, I. V. Rostov, A. Soudackov, M. V. Basilevsky, Chem. Phys. 2000, 254, 249.
- 63 P. K. Agarwal, S. R. Billeter, S. Hammes-Schiffer, J. Phys. Chem. B 2002, 106, 3283.
- 64 P. K. Agarwal, S. R. Billeter, P. T. Rajagopalan, S. J. Benkovic, S. Hammes-Schiffer, P. N. A S. 2002, 99, 2794.
- 65 S. Hammes-Schiffer, ChemPhysChem 2002, 3, 33.
- 66 S. Hammes-Schiffer, S. R. Billeter, Int. Rev. Phys. Chem. 2001, 20, 591.
- 67 S. R. Billeter, S. P. Webb, P. K. Agarwal, T. Iordanov, S. Hammes-Schiffer, J. Am. Chem. Soc. 2001, 123, 11262.
- 68 S. R. Billeter, S. P. Webb, T. Iordanov, P. K. Agarwal, S. Hammes-Schiffer, J. Chem. Phys. 2001, 114, 6925.
- 69Since motion in the H-bond coordinate should precede attainment of the TS and this coordinate is slower than the proton, there can be partial solvent accommodation to that coordinate. However, the important coupling of the solvent is to the charge redistribution in the reaction system, which is primarily governed by the proton motion. This feature, shown for an adiabatic PT in Refs 12 and 13, is analogous to the situation for (classical) methyl transfer in an SN2 reaction [144].
- 70(For numerical calculations consistent with the standard view, see Refs [70–75]). C. Alhambra, J. C. Corchado, M. L. Sánchez, J. Gao, D. G. Truhlar, J. Am. Chem. Soc. 2000, 122, 8197.
- 71 J.-K. Hwang, A. Warshel, J. Phys. Chem. 1993, 97, 10053.
- 72 J.-K. Hwang, Z. T. Chu, A. Yadav, A. Warshel, J. Phys. Chem. 1991, 95, 8445.
- 73 J.-K. Hwang, A. Warshel, J. Am. Chem. Soc. 1996, 118, 11745.
- 74 C. Alhambra, J. Gao, J. C. Corchado, J. Villa, D. G. Truhlar, J. Am. Chem. Soc. 1999, 121, 2253.
- 75 Q. Cui, M. Karplus, J. Am. Chem. Soc. 2002, 124, 3093.
- 76 Z. Smedarchina, W. Siebrand, A. Fernández-Ramos, Q. Cui, J. Am. Chem. Soc. 2003, 125, 243.
- 77 W. Siebrand, Z. Smedarchina, J. Phys. Chem. B 2004, 108, 4185.
- 78 M. H. M. Olsson, P. E. M. Siegbahn, A. Warshel, J. Amer. Chem. Soc. 2004, 126, 2820.
- 79While these two regimes are distinctly separated, there may exist real systems where different isotopes will be in different regimes. For example, the proton potential barrier at the solvent TS configuration may be small enough such that the proton ground vibration state may be above the barrier, but still large enough such that the deuteron ground vibration state, with a smaller ZPE, may be below the barrier. The present discussion assumes that all isotopes transfer in the same regime.
- 80 H. J. Kim, J. T. Hynes, J. Chem. Phys. 1992, 96, 5088.
- 81 H. J. Kim, H. J. J. T. Hynes, J. Amer. Chem. Soc. 1992, 114, 10508.
- 82 H. J. Kim, J. T. Hynes, J. Amer. Chem. Soc. 1992, 114, 10528.
- 83 T. Fonseca, H. J. Kim, J. T. Hynes, J. Photochem. Photobiol. A: Chem. 1994, 82, 67.
- 84 R. S. Mulliken, J. Phys. Chem. 1952, 56, 801.
- 85 R. S. Mulliken, J. Chim. Phys. 1964, 61, 20.
- 86 R. S. Mulliken, W. B. Person, Molecular Complexes, Wiley, New York, 1969.
- 87 R. I. Cukier, J. Phys. Chem. 1996, 100, 15428.
- 88 R. I. Cukier, D. Nocera, Ann. Rev. Phys. Chem. 1998, 49, 337.
- 89 A. Soudackov, S. Hammes-Schiffer, J. Chem. Phys. 2000, 113, 2385.
- 90 N. Iordanova, H. Decornez, S. Hammes-Schiffer, J. Am. Chem. Soc. 2001, 123, 3723.
- 91 N. Iordanova, S. Hammes-Schiffer, J. Am. Chem. Soc. 2002, 124, 4848.
- 92 S. Hammes-Schiffer, Acc. Chem. Res. 2001, 34, 273.
- 93 W. H. Thompson, J. T. Hynes, J. Phys. Chem. A 2001, 105, 2582.
- 94 W. H. Thompson, J. T. Hynes, J. Am. Chem. Soc. 2000, 122, 6278.
- 95 R. A. Marcus, J. Chem. Phys. 1956, 24, 966.
- 96 R. A. Marcus, J. Chem. Phys. 1956, 24, 979.
- 97 R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.
- 98 N. Sutin, Prog. Inorg. Chem. 1983, 30, 441.
- 99
P. M. Kiefer,
J. T. Hynes, in
Hydrogen-Transfer Reactions, Ch. 10 (Eds.:
J. T. Hynes,
J. P. Klinman,
H.-H. Limbach,
R. L. Schowen),
Wiley-VCH,
Weinheim, Germany,
2006, pp.
303–348.
10.1002/9783527611546.ch10 Google Scholar
- 100 C. Alhambra, M. L. Sánchez, J. C. Corchado, J. Gao, D. G. Truhlar, Chem. Phys. Lett. 2002, 355, 388.
- 101 V. K. Babamov, R. A. Marcus, J. Chem. Phys. 1981, 74, 1790.
- 102 C. Hiller, J. Manz, W. H. Miller, J. Römelt, J. Chem. Phys. 1983, 78, 3850.
- 103 W. H. Miller, J. Am. Chem. Soc. 1979, 101, 6810.
- 104 R. T. Skodje, D. G. Truhlar, B. C. Garrett, J. Chem. Phys. 1982, 77, 5955.
- 105 R. A. Marcus, M. E. Coltrin, J. Chem. Phys. 1977, 67, 2609.
- 106 B. C. Garrett, D. G. Truhlar, J. Chem. Phys. 1983, 79, 4931.
- 107 Y. Kim, M. M. Kreevoy, J. Am. Chem. Soc. 1992, 114, 7116.
- 108 W. Siebrand, T. A. Wildman, M. Z. Zgierski, J. Am. Chem. Soc. 1984, 106, 4083.
- 109 W. Siebrand, T. A. Wildman, M. Z. Zgierski, J. Am. Chem. Soc. 1984, 106, 4089.
- 110 R. I. Cukier, J. Phys. Chem. B 2002, 106, 1746.
- 111 R. I. Cukier, J. Zhu, J Phys. Chem. B 1997, 101, 7180.
- 112Discussion of the influence of bending on these results can be found in Refs [14] and [15].
- 113The expression in Eqns (3) and (4) is similar in form to that for weakly electronically coupled (electronically nonadiabatic) electron transfer [95–98], in that the proton coupling C is analogous to the electronic resonance coupling and the reorganization energy ES is analogous to the electronic diabatic solvent reorganization energy. Even though the reorganization energies and couplings are analogous, the physical picture behind the two reaction types is quite different. The reorganization energy for proton tunneling is the free energy difference associated with a Franck-Condon-like excitation (all nuclear and solvent modes other than the proton mode are held fixed) of the ground diabatic proton vibrational state at the equilibrium reactant solvent position to the ground product diabatic proton vibrational state, followed by relaxation along the solvent coordinate to the equilibrium solvent product position (See Fig. 3b).
- 114 K. S. Peters, G. Kim, J. Phys. Chem. A 2004, 108, 2598.
- 115The H-bond vibrational mode is assumed to remain significantly unchanged while the reaction coordinate fluctuates from the 0-0 TS to either the 0-1 or 1-0 TS.
- 116The barrier height dependence V‡ in expression in Eqn (17) was derived from a semiclassical description for the proton resonance splitting [145–147]. Model calculations for OH···O systems [2,15,16] and quantum chemistry calculations of NH···N systems[148] show that the change in the V‡ versus Q is predominantly linear (see Ref. 33 in Ref. [15]). This result yields the linear exponential expression for C in Eqns (5) and (16).
- 117 K. S. Peters, A. Cashin, P. Timbers, J. Am. Chem. Soc. 2000, 122, 107.
- 118 K. S. Peters, A. Cashin, J. Phys. Chem. A 2000, 104, 4833.
- 119 K. S. Peters, G. Kim, J. Phys. Chem. A 2001, 105, 4177.
- 120 C. P. Andrieux, J. Gamby, P. Hapiot, J.-M. Saveant, J. Am. Chem. Soc. 2003, 125, 10119.
- 121 K. S. Peters, Acc. Chem. Res. 2009, 42, 89.
- 122The difference between H-atom, hydride, and proton transfer reactions is primarily governed by their difference in charge rearrangement, which translates into a difference in the amount of reorganization required by the environment. H-atom transfer, for example, will have a smaller charge rearrangement than that of proton transfer, and will thus couple less to the environment, yielding a smaller reorganization energy.
- 123While within the stated restrictions, the theory is generally applicable to H-atom, hydride, and proton transfer, there are important differences between solution and enzymatic reactions. In particular, the nature of the ‘solvent’ coordinate will be different in a biological environment, where ‘solvation’ is associated with an ‘environmental’ coordinate that modulates the symmetry of the hydrogenic species' potential, which should include the fields of charged, polar/polarizable groups and explicit solvent molecules present in (at least) the reactive site. The ‘environmental’ reorganization energy will thus concern their rearrangement. Similarly, the single H-bond coordinate Q needs to be generalized to a number of coordinates in the active site that modulate the proton barrier width.
- 124 G. Brunton, D. Griller, L. R. C. Barclay, K. U. Ingold, J. Am. Chem. Soc. 1976, 98, 6803.
- 125 K. S. Peters, G. Kim, J. Phys. Org. Chem. 2005, 18, 1.
- 126 L. R. Heeb, K. S. Peters, J. Phys. Chem. A 2006, 110, 6408.
- 127 L. R. Heeb, K. S. Peters, J. Phys. Chem. B 2008, 112, 219.
- 128 P. M. Kiefer, J. T. Hynes, Isr. J. Chem. 2004, 44, 171.
- 129This is particularly true for H atom transfer reactions because they are weakly coupled to a polar environment, i.e. small reorganization energies (cf. H atom transfer reaction in Ref [5])[122].
- 130We note in passing that even for data over a broad temperature range where nonlinear behavior is observed, the analysis is useful to analyze different sub-regions in the nonlinear plot where the behavior is effectively linear, i.e. rate and KIE expressions for a given To and the local slope in an Arrhenius plot at To are obtained.
- 131Excited state contributions described by ρL have a key characteristic in that they increase with increased reaction asymmetry ΔGRXN and decreased reorganization energy ES [15,16]. Furthermore, the isotopic disparity ρH< ρD also increases with these trends, resulting in an increase in significance of the third difference in Eqn (33) with increased ΔGRXN and decreased ES [15,16].
- 132 G. G. Swain, E. C. Stivers, J. F. Reuwer, L. J. Schaad, J. Am. Chem. Soc. 1958, 80, 5885.
- 133 J. Hirschi, D. A. Singleton, J. Am. Chem. Soc. 2005, 127, 3294.
- 134 D. Antoniou, S. D. Schwartz, P. N. A. S. 1997, 94, 12360.
- 135 D. Antoniou, S. D. Schwartz, J. Chem. Phys. 1999, 110, 465.
- 136 R. Karmacharya, S. D. Schwartz, J. Chem. Phys. 1999, 110, 7376.
- 137Further remarks on the T dependence of the Swain–Schaad ratio can be found in Section 3c of Ref. [15,16].
- 138 J. T. Hynes, J. Phys. Chem. 1986, 90, 3701.
- 139 R. Rey, K. B. Moller, J. T. Hynes, Chem. Rev. 2004, 104, 1915.
- 140 M. Roca, V. Moliner, I. Tunon, J. T. Hynes, J. Am. Chem. Soc. 2006, 128, 6186.
- 141 J. Ruiz-Pernía, I. Tuñón, V. Moliner, J. T. Hynes, M. Roca, J. Amer. Chem. Soc. 2008, 130, 7477.
- 142 W. Min, X. S. Xie, B. Bagchi, J. Phys. Chem. B 2008, 112, 454.
- 143 B. C. Garrett, D. G. Truhlar, J. Am. Chem. Soc. 1979, 101, 4534.
- 144 B. Gertner, R. M. Whitnell, K. Wilson, J. T. Hynes, J. Am. Chem. Soc. 1991, 113, 74.
- 145 M. S. Child, Molecular Collision Theory, Academic Press, New York, NY, 1974.
- 146 W. H. Miller, J. Phys. Chem. 1979, 83, 960.
- 147 D. Rapp, Quantum Mechanics, Holt, Reinhart, and Winston, Inc., San Francisco, CA, 1971.
- 148 L. Jaroszewski, B. Lesyng, J. J. Tanner, J. A. McCammon, Chem. Phys. Lett. 1990, 175, 282.