Therapeutic peptides targeting the Ras superfamily
Catherine A. Hurd
Department of Biochemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorHelen R. Mott
Department of Biochemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorCorresponding Author
Darerca Owen
Department of Biochemistry, University of Cambridge, Cambridge, UK
Correspondence
Darerca Owen, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
Email: [email protected]
Search for more papers by this authorCatherine A. Hurd
Department of Biochemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorHelen R. Mott
Department of Biochemistry, University of Cambridge, Cambridge, UK
Search for more papers by this authorCorresponding Author
Darerca Owen
Department of Biochemistry, University of Cambridge, Cambridge, UK
Correspondence
Darerca Owen, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK.
Email: [email protected]
Search for more papers by this authorFunding information: AstraZeneca; Biotechnology and Biological Sciences Research Council, Grant/Award Number: BB/M011194/1; Cambridge Cancer Centre; Glover Research Fund; Medical Research Council, Grant/Award Number: MR/K017101/1
Abstract
The Ras superfamily of small GTPases are master regulators of numerous essential processes within the cell, so that when they malfunction, cancer and many other diseases can result. For example, activating Ras mutations are present in approximately 20% of human cancers. As such, they are key therapeutic targets, yet more than three decades of intensive research efforts have failed to produce effective Ras inhibitors in the clinic. This is, in part, due to their relatively smooth surfaces which are difficult to target through traditional drug discovery methods using small molecules. Peptides offer a solution to this issue as they occupy larger surface areas on their targets and therefore offer exquisite selectivity and affinity. However, their use in the past has been limited to extracellular targets due to delivery issues. Recent advances in peptide macrocyclisation, modifications and delivery methods have ignited increased interest in the use of these highly effective biologics for intracellular targets. This review will cover progress made in the development of peptides targeting small GTPases to treat a wide range of diseases.
Graphical Abstract
CONFLICT OF INTEREST
The authors declare no competing interests.
REFERENCES
- 1K. Wennerberg, J. Cell Sci. 2005, 118, 843.
- 2R. B. Haga, A. J. Ridley, Small GTPases 2016, 7, 207.
- 3G. A. Hobbs, C. J. Der, K. L. Rossman, J. Cell Sci. 2016, 129, 1287.
- 4A. Flentje, R. Kalsi, T. S. Monahan, Int. J. Mol. Sci. 2019, 20, 1.
- 5A. Prashar, L. Schnettger, E. M. Bernard, M. G. Gutierrez, Front. Cell. Infect. Microbiol. 2017, 7, 1.
- 6K. Kato, A. D. Cox, M. M. Hisaka, S. M. Graham, J. E. Buss, C. J. Der, Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 6403.
- 7D. B. Whyte, P. Kirschmeier, T. N. Hockenberry, I. Nunez-Oliva, L. James, J. J. Catino, W. R. Bishop, J. Pai, J. Biol. Chem. 1997, 272, 14459.
- 8C. J. Novotny, G. L. Hamilton, F. McCormick, K. M. Shokat, ACS Chem. Biol. 2017, 12, 1956.
- 9A. Ho, N. Chau, I. B. Garcia, C. Ferte, C. Even, F. Burrows, L. Kessler, V. Mishra, K. Magnuson, C. Scholz, A. Gualberto, Int. J. Radiat. Oncol. 2018, 100, 1367.
- 10A. L. Ho, N. Chau, J. Bauman, K. Bible, A. Chintakuntlawar, M. E. Cabanillas, D. J. Wong, I. Braña Garcia, M. S. Brose, V. Boni, C. Even, M. Razaq, V. Mishra, K. Bracken, D. Wages, C. Scholz, A. Gualberto, Ann. Oncol. 2018, 29, 373.
- 11J. M. Ostrem, U. Peters, M. L. Sos, J. A. Wells, K. M. Shokat, Nature 2013, 503, 548.
- 12Z. Qian, P. G. Dougherty, D. Pei, Curr. Opin. Chem. Biol. 2017, 38, 80.
- 13P. Matsson, B. C. Doak, B. Over, J. Kihlberg, Adv. Drug Deliv. Rev. 2016, 101, 42.
- 14J. Chatterjee, C. Gilon, A. Hoffman, H. Kessler, Acc. Chem. Res. 2008, 41, 1331.
- 15J. Chatterjee, F. Rechenmacher, H. Kessler, Angew. Chemie - Int. Ed 2013, 52, 254.
- 16T. B. Trinh, P. Upadhyaya, Z. Qian, D. Pei, ACS Comb. Sci. 2016, 18, 75.
- 17B. N. Bullock, A. L. Jochim, P. S. Arora, J. Am. Chem. Soc. 2011, 133, 14220.
- 18Y.-W. Kim, T. N. Grossmann, G. L. Verdine, Nat. Protoc. 2011, 6, 761.
- 19Y. H. Lau, P. De Andrade, Y. Wu, D. R. Spring, Chem. Soc. Rev. 2015, 44, 91.
- 20D. P. Fairlie, A. Dantas de Araujo, Biopolymers 2016, 106, 843.
- 21S. Baek, P. S. Kutchukian, G. L. Verdine, R. Huber, T. A. Holak, K. W. Lee, G. M. Popowicz, J. Am. Chem. Soc. 2012, 134, 103.
- 22L. D. Walensky, G. H. Bird, J. Med. Chem. 2014, 57, 6275.
- 23G. H. Bird, E. Mazzola, K. Opoku-nsiah, M. A. Lammert, M. Godes, D. S. Neuberg, L. D. Walensky, Nat. Chem. Biol. 2016, 12, 845.
- 24A. D. Cox, S. W. Fesik, A. C. Kimmelman, J. Luo, C. J. Der, Nat. Publ. Gr. 2014, 13, 828.
- 25I. A. Prior, P. D. Lewis, C. Mattos, Cancer Res. 2012, 72, 2457.
- 26K. Sakamoto, Y. Kamada, T. Sameshima, M. Yaguchi, A. Niida, S. Sasaki, M. Miwa, S. Ohkubo, J. Sakamoto, M. Kamaura, N. Cho, A. Tani, Biochem. Biophys. Res. Commun. 2017, 484, 605.
- 27S. Sogabe, Y. Kamada, M. Miwa, A. Niida, T. Sameshima, M. Kamaura, K. Yonemori, S. Sasaki, J. Sakamoto, K. Sakamoto, ACS Med. Chem. Lett. 2017, 8, 732.
- 28A. Niida, S. Sasaki, K. Yonemori, T. Sameshima, M. Yaguchi, T. Asami, K. Sakamoto, M. Kamaura, Bioorganic Med. Chem. Lett. 2017, 27, 2757.
- 29X. Wu, L. Wang, Y. Han, N. Regan, P. K. Li, M. A. Villalona, X. Hu, R. Briesewitz, D. Pei, ACS Comb. Sci. 2011, 13, 486.
- 30X. Wu, P. Upadhyaya, M. A. Villalona-Calero, R. Briesewitz, D. Pei, Med. Chem. Comm. 2013, 4, 378.
- 31Z. Qian, T. Liu, Y. Y. Liu, R. Briesewitz, A. M. Barrios, S. M. Jhiang, D. Pei, ACS Chem. Biol. 2013, 8, 423.
- 32P. Upadhyaya, Z. Qian, N. G. Selner, S. R. Clippinger, Z. Wu, R. Briesewitz, D. Pei, Angew. Chemie—Int. Ed 2015, 54, 7602.
- 33P. Upadhyaya, Z. Qian, N. Habir, D. Pei, Tetrahedron 2014, 70, 7714.
- 34A. Patgiri, K. K. Yadav, P. S. Arora, D. Bar-Sagi, Nat. Chem. Biol. 2011, 7, 585.
- 35A. Patgiri, A. L. Jochim, P. S. Arora, Acc. Chem. Res. 2008, 41, 1289.
- 36E. S. Leshchiner, A. Parkhitko, G. H. Bird, J. Luccarelli, J. A. Bellairs, S. Escudero, K. Opoku-Nsiah, M. Godes, N. Perrimon, L. D. Walensky, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1761.
- 37P. I. Poulikakos, C. Zhang, G. Bollag, K. M. Shokat, N. Rosen, Nature 2010, 464, 427.
- 38G. Hatzivassiliou, K. Song, I. Yen, B. J. Brandhuber, D. J. Anderson, R. Alvarado, M. J. C. Ludlam, D. Stokoe, S. L. Gloor, G. Vigers, T. Morales, I. Aliagas, B. Liu, S. Sideris, K. P. Hoeflich, B. S. Jaiswal, S. Seshagiri, H. Koeppen, M. Belvin, L. S. Friedman, S. Malek, Nature 2010, 464, 431.
- 39A. K. Freeman, D. A. Ritt, D. K. Morrison, Mol. Cell 2013, 49, 751.
- 40C. M. Beneker, M. Rovoli, G. Kontopidis, M. Röring, S. Galda, S. Braun, T. Brummer, C. McInnes, J. Med. Chem. 2019, 62, 3886.
- 41A. Y. Gunderwala, A. A. Nimbvikar, N. J. Cope, Z. Li, Z. Wang, ACS Chem. Biol. 2019, 14, 1471.
- 42M. Chen, A. Peters, T. Huang, X. Nan, Rev. Med. Chem. 2016, 16, 391.
- 43R. Spencer-Smith, A. Koide, Y. Zhou, R. R. Eguchi, F. Sha, P. Gajwani, D. Santana, A. Gupta, M. Jacobs, E. Herrero-Garcia, J. Cobbert, H. Lavoie, M. Smith, T. Rajakulendran, E. Dowdell, M. N. Okur, I. Dementieva, F. Sicheri, M. Therrien, J. F. Hancock, M. Ikura, S. Koide, J. P. O'Bryan, Nat. Chem. Biol. 2017, 13, 62.
- 44I. Khan, R. Spencer-Smith, J. P. O'Bryan, Oncogene 2019, 38, 2984.
- 45S. Sarkar-Banerjee, A. Sayyed-Ahmad, P. Prakash, K. J. Cho, M. N. Waxham, J. F. Hancock, A. A. Gorfe, J. Am. Chem. Soc. 2017, 139, 13466.
- 46P. Prakash, A. Sayyed-Ahmad, K. J. Cho, D. M. Dolino, W. Chen, H. Li, B. J. Grant, J. F. Hancock, A. A. Gorfe, Sci. Rep. 2017, 7, 1.
- 47N. Bery, S. Legg, J. Debreczeni, J. Breed, K. Embrey, C. Stubbs, P. Kolasinska-Zwierz, N. Barrett, R. Marwood, J. Watson, J. Tart, R. Overman, A. Miller, C. Phillips, R. Minter, T. H. Rabbitts, Nat. Commun. 2019, 10, 2607.
- 48B. O. Bodemann, M. A. White, Nat. Rev. Cancer 2008, 8, 133.
- 49N. M. Hamad, J. H. Elconin, A. E. Karnoub, W. Bai, J. N. Rich, R. T. Abraham, C. J. Der, C. M. Counter, Genes Dev. 2002, 16, 2045.
- 50K. Lim, K. O. Hayer, S. J. Adam, S. D. Kendall, P. M. Campbell, C. J. Der, C. M. Counter, N. Carolina, C. Hill, N. Carolina, Curr. Biol. 2006, 16, 2385.
- 51K. Lim, A. T. Baines, J. J. Fiordalisi, M. Shipitsin, L. A. Feig, A. D. Cox, C. J. Der, C. M. Counter, Cancer Cell 2005, 7, 533.
- 52J. C. Thomas, J. M. Cooper, N. S. Clayton, C. Wang, M. A. White, C. Abell, D. Owen, H. R. Mott, J. Biol. Chem. 2016, 291, 18310.
- 53R. B. Fenwick, L. J. Campbell, K. Rajasekar, S. Prasannan, D. Nietlispach, J. Camonis, D. Owen, H. R. Mott, Structure 2010, 18, 985.
- 54M. N. Sutton, H. Yang, G. Y. Huang, C. Fu, M. Pontikos, Y. Wang, W. Mao, L. Pang, M. Yang, J. Liu, J. Parker-Thornburg, Z. Lu, R. C. Bast, Autophagy 2018, 14, 637.
- 55D. B. Badgwell, Z. Lu, K. Le, F. Gao, M. Yang, G. K. Suh, J. J. Bao, P. Das, M. Andreeff, W. Chen, Y. Yu, A. A. Ahmed, W. S.-L. Liao, R. C. Bast, Oncogene 2012, 31, 68.
- 56Y. Yu, F. Xu, H. Peng, X. Fang, S. Zhao, Y. Li, B. Cuevas, W. L. Kuo, J. W. Gray, M. Siciliano, G. B. Mills, R. C. Bast Jr.., Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 214.
- 57Y. Yu, R. Luo, Z. Lu, W. Wei Feng, D. Badgwell, J. P. Issa, D. G. Rosen, J. Liu, R. C. Bast, Methods Enzymol. 2006, 407, 455.
- 58M. N. Sutton, Z. Lu, Y. C. Li, Y. Zhou, T. Huang, A. S. Reger, A. M. Hurwitz, T. Palzkill, C. Logsdon, X. Liang, J. W. Gray, X. Nan, J. Hancock, G. M. Wahl, R. C. Bast, Cell Rep. 2019, 29, 3448.
- 59M. N. Sutton, G. Y. Huang, X. Liang, R. Sharma, A. S. Reger, W. Mao, L. Pang, P. J. Rask, K. Lee, J. P. Gray, A. M. Hurwitz, T. Palzkill, S. W. Millward, C. Kim, Z. Lu, R. C. Bast, Cancers (Basel) 2019, 11(4), 557.
- 60Z. Lu, M. T. Baquero, H. Yang, M. Yang, A. S. Reger, C. Kim, D. A. Levine, C. H. Clarke, W. S. L. Liao, R. C. Bast, Autophagy 2014, 10, 1071.
- 61E. White, J. Clin. Invest. 2015, 125, 42.
- 62A. P. Porter, A. Papaioannou, A. Malliri, Small GTPases 2016, 7, 123.
- 63E. Fabbrizio, A. Debant, S. Schmidt, S. Diriong, J. Me, FEBS Lett. 2002, 523, 35.
- 64N. Yoshizuka, R. Moriuchi, T. Mori, K. Yamada, S. Hasegawa, T. Maeda, T. Shimada, Y. Yamada, S. Kamihira, M. Tomonaga, S. Katamine, J. Biol. Chem. 2004, 279, 43998.
- 65N. Bouquier, S. Fromont, J. C. Zeeh, C. Auziol, P. Larrousse, B. Robert, M. Zeghouf, J. Cherfils, A. Debant, S. Schmidt, Chem. Biol. 2009, 16, 391.
- 66R. Odegrip, D. Coomber, B. Eldridge, R. Hederer, P. A. Kuhlman, C. Ullman, K. FitzGerald, D. McGregor, Proc. Natl. Acad. Sci. 2004, 101, 2806.
- 67G. J. N. Tetley, N. P. Murphy, S. Bonetto, G. Ivanova-Berndt, J. Revell, H. R. Mott, R. N. Cooley, D. Owen, J. Biol. Chem. 2020, 295, 2866.
- 68K. Sakamoto, Y. Adachi, Y. Komoike, Y. Kamada, R. Koyama, Y. Fukuda, A. Kadotani, T. Asami, Biochem. Biophys. Res. Commun. 2017, 483, 183.
- 69Y. Adachi, K. Sakamoto, T. Umemoto, Y. Fukuda, A. Tani, T. Asami, Bioorganic Med. Chem. 2017, 25, 2148.
- 70J. O. Agola, P. A. Jim, H. H. Ward, S. Basuray, A. Wandinger-Ness, Clin. Genet. 2011, 80, 305.
- 71J. Spiegel, P. M. Cromm, A. Itzen, R. S. Goody, T. N. Grossmann, H. Waldmann, Angew. Chemie—Int. Ed 2014, 53, 2498.
- 72P. M. Cromm, J. Spiegel, P. Küchler, L. Dietrich, J. Kriegesmann, M. Wendt, R. S. Goody, H. Waldmann, T. N. Grossmann, ACS Chem. Biol. 2016, 11, 2375.
- 73S. Mitra, J. E. Montgomery, M. J. Kolar, G. Li, K. J. Jeong, B. Peng, G. L. Verdine, G. B. Mills, R. E. Moellering, Nat. Commun. 2017, 8, 1.
- 74K. Nishida, S. Yamasaki, A. Hasegawa, A. Iwamatsu, H. Koseki, T. Hirano, J. Immunol. 2011, 187, 932.
- 75R. Uchida, T. Egawa, Y. Fujita, K. Furuta, H. Taguchi, S. Tanaka, K. Nishida, Mol. Immunol. 2019, 105, 32.
- 76J. G. Donaldson, C. L. Jackson, Nat. Rev. Mol. Cell Biol. 2011, 12, 362.
- 77Q. Chu, R. E. Moellering, G. J. Hilinski, Y. Kim, T. N. Grossmann, T. Yeh, G. L. Verdine, Med. Chem. Comm. 2014, 6, 111.