Synthesis of inositol-based star polymers through low ppm ATRP methods
Corresponding Author
Paweł Chmielarz
Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
Correspondence to: Paweł Chmielarz, Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
E-mail: [email protected]
Search for more papers by this authorCorresponding Author
Paweł Chmielarz
Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
Correspondence to: Paweł Chmielarz, Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
E-mail: [email protected]
Search for more papers by this authorAbstract
The vitamin B8-based macroinitiator with six 2-bromoisobutyric initiating sites was prepared for the first time by the transesterification reaction of meso-inositol with 2-bromoisobutyryl bromide. A series of six-armed (co)polymers, containing hydrophilic poly(di(ethylene glycol) methyl ether methacrylate) and amphiphilic poly(di(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) as the arms and meso-inositol as the core, were obtained by low ppm atom transfer radical polymerization (ATRP) methods, utilizing 30 ppm of catalyst complex. Under Fe0-mediated supplemental activators and reducing agents ATRP, Cu0-mediated supplemental activators and reducing agents ATRP, Ag0-mediated activators regenerated by electron transfer ATRP, and simplified electrochemically mediated ATRP conditions, polymerization proceeded on to high conversion while maintaining low dispersity (Đ = 1.05–1.16) giving well-defined six-armed star (co)polymers. 1H NMR spectral results confirm the formation of new star-shaped block (co)polymers. The absence of intermolecular coupling reactions during synthesis was confirmed by gel permeation chromatography analyses of the side chains of received star (co)polymers. These vitamin B8-based star (co)polymers may find biomedical applications as thermo-sensitive drug delivery systems, biosensors, and tissue engineering solutions. Copyright © 2017 John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
pat4065-sup-0001-SI.docxWord 2007 document , 1,022 KB |
Data S1. Supporting info item Fig. S1. Synthesis of meso-inositol-Br6 multifuntional ATRP initiator. Fig. S2. 1H–NMR analysis of meso-inositol-Br6 (Mn = 1,070, Ð = 1.03) after purification (in CDCl3). Fig. S3. Cyclic voltammetry results of CuIIBr2/TPMA (black) and in the presence of vitamin-based Ino-Br6 macroinitiator (gray). The arrow (green) indicates the applied potential during electrolysis. Measurement conditions: [DEGMA]/[Ino-Br6 (per –Br)]/[CuIIBr2/TPMA] = 60/1/0.0018, [DEGMA] = 2.7 M, [CuIIBr2/TPMA] = 0.08 mM, [TBAP] = 0.2 mM, T = 55 °C. Table 1, entries 4−5. Fig. S4. GPC traces of DEGMA polymerization in the presence of Ino-Br6 via (a) Fe0-mediated SARA ATRP, (b) Cu0-mediated SARA ATRP, (c) Ag0-mediated ARGET ATRP, (d) seATRP under constant potential conditions and (e) seATRP under multistep constant current conditions. GPC traces of MMA simplified eATRP in the presence of Ino-(PDEGMA-Br)6 under (f) constant potential electrolysis and (g) constant current electrolysis. Fig. S5. Multi-step electrolysis for seATRP; (a) results from applied potential (black line) and applied current (gray line) conditions, (b) first-order kinetic plots of ln([M]0/[M]) vs time, and (c) Mn and Mw/Mn values vs monomer conversion for electrolysis under constant potential/current approach. Reaction conditions: [DEGMA]/[Ino-Br6 (per –Br)]/[CuIIBr2/TPMA] = 60/1/0.0018, [DEGMA] = 2.7 M, [CuIIBr2/TPMA] = 0.08 mM, [TBAP] = 0.2 mM, T = 55 °C. Table 1, entries 4−5. Fig. S6. Cyclic voltammetry results of CuIIBr2/TPMA (black) and in the presence of Ino-(PDEGMA-Br)6 (gray). The arrow (green) indicates the applied potential during electrolysis. Measurement conditions: [MMA]/[Ino-(PDEGMA-Br)6 (per –Br)]/[CuIIBr2/TPMA] = 40/1/0.0012, [MMA] = 1.0 M, [CuIIBr2/TPMA] = 0.03 mM, [TBAP] = 0.2 M, T = 55 °C. Table 1, entries 6−7. Fig. S7. First-order kinetic plots for electrolysis under constant potential/current conditions. Reaction conditions: [MMA]/[Ino-(PDEGMA-Br)6 (per –Br)]/[CuIIBr2/TPMA] = 40/1/0.0012, [MMA] = 1.0 M, [CuIIBr2/TPMA] = 0.03 mM, [TBAP] = 0.2 M, T = 55 °C. Table 1, entries 6−7. Fig. S8. GPC traces of (a−e) PDEGMA arms cleaved from the inositol-based star polymers (Table 1 and 2, entries 1−5); GPC traces of (f−g) PDEGMA-b-PMMA arms cleaved from the inositol-based star copolymers (Table 1 and 2, entries 6−7). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Hirao, A. Matsuo, K. Morifuji, Y. Tokuda, M. Hayashi, Polym. Adv. Technol. 2001, 12, 680.
- 2A. Blencowe, J. F. Tan, T. K. Goh, G. G. Qiao, Polymer 2009, 50, 5.
- 3T. Hirano, H.-S. Yoo, Y. Ozama, A. Abou El-Magd, K. Sugiyama, A. Hirao, J. Inorg. Organomet. Polym. Mater. 2010, 20, 445.
- 4P. G. Kadam, S. Mhaske, Des. Monomers Polym. 2011, 14, 515.
- 5T. Higashihara, M. Hayashi, A. Hirao, Prog. Polym. Sci. 2011, 36, 323.
- 6A. Hirao, R. Inushima, T. Nakayama, T. Watanabe, H.-S. Yoo, T. Ishizone, K. Sugiyama, T. Kakuchi, S. Carlotti, A. Deffieux, Eur. Polym. J. 2011, 47, 713.
- 7S. Heshmat-Azad, A. Abdolmaleki, Organic Chem. Curr. Res. 2014, 3, 1.
- 8P. Król, P. Chmielarz, Prog. Org. Coat. 2014, 77, 913.
- 9W. Wu, W. Wang, J. Li, Prog. Polym. Sci. 2015, 46, 55.
- 10J. M. Liang, A. C. Feng, J. Y. Yuan, Prog Chem 2015, 27, 522.
- 11P. Chmielarz, S. Park, A. Sobkowiak, K. Matyjaszewski, Polymer 2016, 88, 36.
- 12W. Lin, S. Hanson, W. Han, X. Zhang, N. Yao, H. Li, L. Zhang, C. Wang, Acta Biomater. 2017, 48, 378.
- 13G. Deng, Y. Chen, Macromolecules 2004, 37, 18.
- 14R. J. Blackwell, O. G. Harlen, T. C. B. McLeish, Macromolecules 2001, 34, 2579.
- 15A. W. Bosman, R. Vestberg, A. Heumann, J. M. J. Fréchet, C. J. Hawker, J. Am. Chem. Soc. 2003, 125, 715.
- 16S. Peleshanko, J. Jeong, V. V. Shevchenko, K. L. Genson, Y. Pikus, M. Ornatska, S. Petrash, V. V. Tsukruk, Macromolecules 2004, 37, 7497.
- 17M. A. Ward, T. K. Georgiou, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2850.
- 18F. Liu, D. Wan, T. Tang, Chin. J. Polym. Sci. 2014, 32, 51.
- 19R. T. A. Mayadunne, G. Moad, E. Rizzardo, Tetrahedron Lett. 2002, 43, 6811.
- 20R. T. A. Mayadunne, J. Jeffery, G. Moad, E. Rizzardo, Macromolecules 2003, 36, 1505.
- 21N. Hadjichristidis, H. Iatrou, M. Pitsikalis, J. Mays, Prog. Polym. Sci. 2006, 31, 1068.
- 22G. Lapienis, Prog. Polym. Sci. 2009, 34, 852.
- 23Y. Chen, K. Fuchise, A. Narumi, S. Kawaguchi, T. Satoh, T. Kakuchi, Macromolecules 2011, 44, 9091.
- 24X. Huang, Y. Xiao, M. Lang, Macromol. Res. 2011, 19, 113.
- 25D. Han, X. Tong, Y. Zhao, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4198.
- 26P. Zhou, Y.-Y. Liu, L.-Y. Niu, J. Zhu, Polym. Chem. 2015, 6, 2934.
- 27S. M. Kimani, S. C. Moratti, Macromol. Rapid Commun. 2006, 27, 1887.
- 28N. Bennani, H. Fabre, Anal. Chim. Acta 2001, 434, 67.
- 29K. Schimpf, L. Thompson, S. Baugh, J. AOAC Int. 2012, 95, 937.
- 30F. Rebeille, S. Ravanel, A. Marquet, R. R. Mendel, A. G. Smith, M. J. Warren, Nat. Prod. Rep. 2007, 24, 949.
- 31V. Mishra, R. S. Sharma, M. Paramasivam, S. Bilgrami, S. Yadav, A. Srinivasan, C. Betzel, C. R. Babu, T. P. Singh, Plant Sci. 2005, 168, 615.
- 32S. M. Federica, F. L. Alberto, I. L. Emilia, M. F. Carina, S. C. Alfredo, Parasitol. Res. 2013, 112, 1047.
- 33P. J. Roth, K. T. Wiss, R. Zentel, P. Theato, Macromolecules 2008, 41, 8513.
- 34P. J. Roth, D. Kessler, R. Zentel, P. Theato, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 3118.
- 35J. J. Haven, C. Guerrero-Sanchez, D. J. Keddie, G. Moad, S. H. Thang, U. S. Schubert, Polym. Chem. 2014, 5, 5236.
- 36Y. Y. Khine, Y. Jiang, A. Dag, H. Lu, M. H. Stenzel, Macromol. Biosci. 2015, 15, 1091.
- 37D. Tranchida, E. Sperotto, T. Staedler, X. Jiang, H. Schönherr, Adv. Eng. Mater. 2011, 13, B369.
- 38J.-F. Lutz, A. Hoth, Macromolecules 2006, 39, 893.
- 39J.-F. Lutz, K. Weichenhan, Ö. Akdemir, A. Hoth, Macromolecules 2007, 40, 2503.
- 40C. R. Becer, S. Hahn, M. W. M. Fijten, H. M. L. Thijs, R. Hoogenboom, U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7138.
- 41X. Jiang, B. Zhao, Macromolecules 2008, 41, 9366.
- 42S.-i. Yamamoto, J. Pietrasik, K. Matyjaszewski, Macromolecules 2008, 41, 7013.
- 43J.-F. Lutz, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3459.
- 44C. Pietsch, R. Hoogenboom, U. S. Schubert, Angew. Chem. Int. Ed. 2009, 48, 5653.
- 45S. Park, H. Y. Cho, J. A. Yoon, Y. Kwak, A. Srinivasan, J. O. Hollinger, H.-j. Paik, K. Matyjaszewski, Biomacromolecules 2010, 11, 2647.
- 46T. G. O'Lenick, X. Jiang, B. Zhao, Langmuir 2010, 26, 8787.
- 47M. W. Jones, M. I. Gibson, G. Mantovani, D. M. Haddleton, Polym. Chem. 2011, 2, 572.
- 48C. Porsch, S. Hansson, N. Nordgren, E. Malmstrom, Polym. Chem. 2011, 2, 1114.
- 49L. Peng, T. Liu, S. Liu, Y. Han, X. Li, N. Guang, W. Sheng, J. Polym. Res. 2015, 22, 126.
- 50S. Das, D. P. Chatterjee, R. Ghosh, P. Das, A. K. Nandi, RSC Adv. 2016, 6, 8773.
- 51E. W. Merrill, J. Biomater. Sci. Polym. Ed. 1993, 5, 1.
- 52C. Y. Lin, M. L. Coote, A. Petit, P. Richard, R. Poli, K. Matyjaszewski, Macromolecules 2007, 40, 5985.
- 53K. Matyjaszewski, S. M. Jo, H.-j. Paik, D. A. Shipp, Macromolecules 1999, 32, 6431.
- 54W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
- 55K. Matyjaszewski, N. V. Tsarevsky, Nat. Chem. 2009, 1, 276.
- 56M. Ding, X. Jiang, L. Zhang, Z. Cheng, X. Zhu, Macromol. Rapid Commun. 2015, 36, 1702.
- 57C. Boyer, N. A. Corrigan, K. Jung, D. Nguyen, T.-K. Nguyen, N. N. M. Adnan, S. Oliver, S. Shanmugam, J. Yeow, Chem. Rev. 2016, 116, 1803.
- 58Z.-h. Huang, Y.-y. Zhou, Z.-m. Wang, Y. Li, W. Zhang, N.-c. Zhou, Z.-b. Zhang, X.-l. Zhu, Chin. J. Polym. Sci. 2017, 35, 317.
- 59P. Krys, K. Matyjaszewski, Eur. Polym. J. 2017, 89, 482.
- 60W. Jakubowski, K. Min, K. Matyjaszewski, Macromolecules 2006, 39, 39.
- 61Y. Gnanou, G. Hizal, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 351.
- 62K. Min, H. Gao, K. Matyjaszewski, Macromolecules 2007, 40, 1789.
- 63R. Casolari, F. Felluga, V. Frenna, F. Ghelfi, U. M. Pagnoni, A. F. Parsons, D. Spinelli, Tetrahedron 2011, 67, 408.
- 64T. B. Mai, T. N. Tran, L. G. Bach, J. M. Park, K. T. Lim, Mol. Cryst. Liq. Cryst. 2014, 602, 118.
- 65B. S. Lee, J. Y. Kim, J. H. Park, W. K. Cho, I. S. Choi, J. Nanosci. Nanotechnol. 2016, 16, 3106.
- 66Y. Kwak, K. Matyjaszewski, Polym. Int. 2009, 58, 242.
- 67H. Chen, D. Liu, Y. Song, R. Qu, C. Wang, Polym. Adv. Technol. 2011, 22, 1513.
- 68V. A. Williams, T. G. Ribelli, P. Chmielarz, S. Park, K. Matyjaszewski, J. Am. Chem. Soc. 2015, 137, 1428.
- 69V. A. Williams, K. Matyjaszewski, Macromolecules 2015, 48, 6457.
- 70K. Matyjaszewski, N. V. Tsarevsky, W. A. Braunecker, H. Dong, J. Huang, W. Jakubowski, Y. Kwak, R. Nicolay, W. Tang, J. A. Yoon, Macromolecules 2007, 40, 7795.
- 71Y. Zhang, Y. Wang, K. Matyjaszewski, Macromolecules 2011, 44, 683.
- 72D. Konkolewicz, Y. Wang, M. Zhong, P. Krys, A. A. Isse, A. Gennaro, K. Matyjaszewski, Macromolecules 2013, 46, 8749.
- 73D. Konkolewicz, Y. Wang, P. Krys, M. Zhong, A. A. Isse, A. Gennaro, K. Matyjaszewski, Polym. Chem. 2014, 5, 4396.
- 74P. Chmielarz, P. Krys, S. Park, K. Matyjaszewski, Polymer 2015a, 71, 143.
- 75J. R. C. Costa, P. V. Mendonça, P. Maximiano, A. C. Serra, T. Guliashvili, J. F. J. Coelho, Macromolecules 2015, 48, 6810.
- 76P. Chmielarz, P. Krol, Express Polym Lett 2016, 10, 302.
- 77C. M. R. Abreu, L. Fu, S. Carmali, A. C. Serra, K. Matyjaszewski, J. F. J. Coelho, Polym. Chem. 2017, 8, 375.
- 78A. J. D. Magenau, N. C. Strandwitz, A. Gennaro, K. Matyjaszewski, Science 2011, 332, 81.
- 79N. Bortolamei, A. A. Isse, A. J. D. Magenau, A. Gennaro, K. Matyjaszewski, Angew. Chem. Int. Ed. 2011, 50, 11391.
- 80A. J. D. Magenau, N. Bortolamei, E. Frick, S. Park, A. Gennaro, K. Matyjaszewski, Macromolecules 2013, 46, 4346.
- 81S. Park, H. Y. Cho, K. B. Wegner, J. Burdynska, A. J. D. Magenau, H. J. Paik, S. Jurga, K. Matyjaszewski, Macromolecules 2013, 46, 5856.
- 82G.-P. Jin, Y. Fu, X.-C. Bao, X.-S. Feng, Y. Wang, W.-H. Liu, J. Appl. Electrochem. 2014, 44, 621.
- 83S. Park, P. Chmielarz, A. Gennaro, K. Matyjaszewski, Angew. Chem. Int. Ed. 2015, 54, 2388.
- 84J.-K. Guo, Y.-N. Zhou, Z.-H. Luo, AIChE J 2015, 61, 4347.
- 85P. Chmielarz, S. Park, A. Simakova, K. Matyjaszewski, Polymer 2015, 60, 302.
- 86P. Chmielarz, A. Sobkowiak, K. Matyjaszewski, Polymer 2015, 77, 266.
- 87L. T. Strover, J. Malmström, L. A. Stubbing, M. A. Brimble, J. Travas-Sejdic, Electrochim. Acta 2016, 188, 57.
- 88F. Lorandi, M. Fantin, A. A. Isse, A. Gennaro, Polym. Chem. 2016, 7, 5357.
- 89P. Chmielarz, Express Polym Lett 2016, 10, 810.
- 90M. Fantin, F. Lorandi, A. A. Isse, A. Gennaro, Macromol. Rapid Commun. 2016, 37, 1318.
- 91P. Chmielarz, Polymer 2016, 102, 192.
- 92J.-K. Guo, Y.-N. Zhou, Z.-H. Luo, Macromolecules 2016, 49, 4038.
- 93P. Chmielarz, Chem. Pap. 2017, 71, 161.
- 94P. Chmielarz, Express Polym Lett 2017, 11, 140.
- 95P. Chmielarz, M. Fantin, S. Park, A. A. Isse, A. Gennaro, A. J. D. Magenau, A. Sobkowiak, K. Matyjaszewski, Prog. Polym. Sci. 2017 http://doi.org/10.1016/j.progpolymsci.2017.02.005.
- 96P. Chmielarz, P. Krys, Z. Wang, Y. Wang, K. Matyjaszewski, Macromol. Chem. Phys. 2017 https://doi.org/10.1002/macp.201700106.
- 97P. Chmielarz, Polym. Adv. Technol. 2017 https://doi.org/10.1002/pat.4062.
- 98K. Matyjaszewski, Macromolecules 2012, 45, 4015.
- 99J. H. Xia, K. Matyjaszewski, Macromolecules 1999, 32, 2434.
- 100A. Schmalz, H. Schmalz, A. H. E. Muller, Soft Matter 2012, 8, 9436.
- 101F. A. Plamper, H. Becker, M. Lanzendörfer, M. Patel, A. Wittemann, M. Ballauff, A. H. E. Müller, Macromol. Chem. Phys. 2005, 206, 1813.
- 102P. J. Roth, F. D. Jochum, R. Zentel, P. Theato, Biomacromolecules 2010, 11, 238.
- 103K. Sun, M. Xu, K. Zhou, H. Nie, J. Quan, L. Zhu, Mater. Sci. Eng. C 2016, 68, 172.
- 104A. Kuila, N. Maity, D. P. Chatterjee, A. K. Nandi, J. Phys. Chem. B 2016, 120, 2557.
- 105L. Vayachuta, P. Phinyocheep, D. Derouet, S. Pascual, E-Polymers 2010, 10, 292.
10.1515/epoly.2010.10.1.292 Google Scholar
- 106M. Kostrzewska, B. Ma, I. Javakhishvili, J. H. Hansen, S. Hvilsted, A. L. Skov, Polym. Adv. Technol. 2015, 26, 1059.
- 107M. A. Diab, A. Z. El-Sonbati, J. A. Hasanen, S. M. Saad, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2015, 45, 1439.
- 108S. Ata, P. Dhara, R. Mukherjee, N. K. Singha, Eur. Polym. J. 2016, 75, 276.
- 109D. Neugebauer, B. S. Sumerlin, K. Matyjaszewski, B. Goodhart, S. S. Sheiko, Polymer 2004, 45, 8173.