Influence of talc on the fire retardant properties of highly filled intumescent polypropylene composites
Corresponding Author
S. Duquesne
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France.Search for more papers by this authorF. Samyn
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorS. Bourbigot
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorP. Amigouet
Luzenac Europe, 2 place E.-Bouillères, BP 1162, 31036 Toulouse, France
Search for more papers by this authorF. Jouffret
Luzenac Europe, 2 place E.-Bouillères, BP 1162, 31036 Toulouse, France
Search for more papers by this authorK. Shen
Luzenac/Borax, 345 Inverness Dr., South, Centennial, CO 80112, USA
Search for more papers by this authorCorresponding Author
S. Duquesne
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France.Search for more papers by this authorF. Samyn
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorS. Bourbigot
Lab. Procédés d'Elaboration de Revêtements Fonctionnels, UMR-CNRS 8008/LSPES, Ecole Nationale Supérieure de Chimie de Lille, BP 90108, 59652 Villeneuve d'Ascq Cedex, France
Search for more papers by this authorP. Amigouet
Luzenac Europe, 2 place E.-Bouillères, BP 1162, 31036 Toulouse, France
Search for more papers by this authorF. Jouffret
Luzenac Europe, 2 place E.-Bouillères, BP 1162, 31036 Toulouse, France
Search for more papers by this authorK. Shen
Luzenac/Borax, 345 Inverness Dr., South, Centennial, CO 80112, USA
Search for more papers by this authorAbstract
Intumescent systems have been developed since many years for a wide range of applications, even if they are mainly used in coatings nowadays. The objective of this paper is to determine if the intumescent concept can be applied to highly filled reinforced polypropylene (PP) composites containing talc. Formulations that meet the electrical industry requirements have been developed, even if it has been observed that the addition of talc into intumescent PP leads to a decrease in the fire retardancy of the systems. A thermal stabilization of the material is noted at high temperature in the presence of talc. An increase in the crystallinity of the intumescent structure is suspected to be, at least partially, responsible for the decrease in the performance. Copyright © 2008 John Wiley & Sons, Ltd.
REFERENCES
- 1 Zhang S, Horrocks AR. A review of flame retardant polypropylene fibres. Prog. Polym. Sci. 2003; 28(11): 1517–1538.
- 2 Bourbigot S, Le Bras Mn Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol. Mater. Eng. 2004; 289(6): 499–511.
- 3 Delobel R, Bourbigot S, Le Bras M, Schmidt Y, Leroy JM. Invariant values of kinetic parameters—evaluation of fire retardancy application to the polypropylene (PP)– ammonium polyphosphate (APP)/pentaerythritol (PER) system. Makromolekulare Chemie., Macromol. Symp. 1993; 74: 59–69 (4th Meeting on Fire Retardant Polymers, 1992).
- 4 Clerc L, Ferry L, Leroy E, Lopez-Cuesta JM. Influence of talc physical properties on the fire retarding behaviour of (ethylene-vinyl acetate copolymer/magnesium hydroxide/talc) composites. Polym. Degrad. Stab. 2005; 88(3): 504–511.
- 5 Lewin M. Synergistic, catalytic effects in flame retardancy of polymeric materials—an overview. J. Fire Sci. 1999; 17(1): 3–19.
- 6 Bourbigot S, Le Bras M, Delobel R, Bre´ant P, Tremillon J-M. 4a zeolite synergistic agent in new flame retardant intumescent formulations of polyethylenic polymers—study of the effect of the constituent monomers. Polym. Degrad. Stab. 1996; 54(2–3): 275–287.
- 7 Duquesne S, Samyn F, Bourbigot S, Delobel R, Amigouët P, Jouffret F, Shen K. Zinc Borates: Potential Synergists in Intumescent Systems. Fire Retardancy and Protection of Materials 2005, Berlin, Germany, 7–9 September 2005.
- 8 Duquesne S, Lefebvre J, Bourbigot S, Delobel R, Recourt P. Thermal stability and fire behavior of intumescent systems in presence of layered inorganic fillers and silica. In Fire and Polymers IV—Materials and Concepts for Hazard Prevention, CA Wilkie, GL Nelson (eds). American Chemical Society: Washington, 2006; 89–101.
- 9 American Society for Testings and Materials. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-like Combustion of Plastics. ASTM D-2863/77: Philadelphia, PA, 1977.
- 10 Underwriters Laboratories. Tests for Flammability of Plastics Materials for Part Devices and Appliances. ANSI//ASTM D-635/77: Northbrook, IL, 1977.
- 11 International Standard IEC 60695-2-12—Fire hazard testing—Part 2–12: Glowing/hot-wire based test methods—Glow-wire flammability test method for materials.
- 12 International Standard IEC 60695-2-13—Fire hazard testing—Part 2–13: Glowing/hot-wire based test methods—Glow-wire ignitability test method for materials.
- 13 Babrauskas V. Development of the cone calorimeter—a bench-scale heat release rate apparatus based on oxygen consumption. Fire Mater. 1984; 8(2): 81–95.
- 14 Kaspersmaa J, Doumena C, Munrob S, Prinsa AM. Fire retardant mechanism of aliphatic bromine compounds in polystyrene and polypropylene. Polym. Degrad. Stab. 2002; 77: 325–331.
- 15 Duquesne S, Delobel R, Le Bras M, Camino G. A comparative study of the mechanism of action of ammonium polyphosphate and expandable graphite in polyurethane. Polym. Degrad. Stab. 2002; 77(2): 333–344.
- 16 Duquesne S, Lefebvre J, Bourbigot S, Le Bras M, Delobel R, Recourt P. Nanoparticles as potential synergists in intumescent systems. In Proceedings of 228th ACS National Meeting, Philadelphia, PA, U S A, 22–26 August 2004.
- 17 Jimenez M, Duquesne S, Bourbigot S. Multi scale experimental approach for developing high-performance intumescent coatings. Ind. Eng. Chem. Res. 2006; 45(13): 4500–4508.
- 18 Almeras X, Le Bras M, Poutch F, Bourbigot S, Marosi G, Anna P. Effect of fillers on fire retardancy of intumescent polypropylene blends. Macromol Symp 2003; 198: 35–447. (7th European Symposium on Polymer Blends, 2002).
- 19 Williams IG. Flame retardant polyamides—selection criteria for electrical applications. IEE Conference Publication, Vol. 239. 1984; 205–208. (Dielectr Mater Meas Appl).
- 20 Horold S. Phosphorus flame retardants for composites. In Proceedings of the 44th International SAMPE Symposium, Long Beach, CA, 23–27 May 1999, 188–197.
- 21 Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi Gy, Keszei S, Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym. Degrad. Stab. 2003; 82(2): 325–331.
- 22 Ecole J, Calefas A. La dégradation des polymères. In La stabilisation des polymers, J Claude, P Lorin (eds). Techno-Nathan International: Paris, 1987; 22–27.
- 23 Gugumus F. Re-examination of the thermal oxidation reactions of polymers. Various reactions in polyethylene and polypropylene. Polym. Degrad. Stab. 2002; 77(1): 147–155.
- 24 Henman TJ. Melt stabilization of polypropylene. Dev. Polym. Stab. 1979; 1: 39–99.
- 25 Camino G, Luda MP. Mechanistic study on intumescence. In Fire Retardancy of Polymers: The Use of Intumescence, M Le Bras, G Camino, S Bourbigot, R Delobel (eds). Royal Society of Chemistry: London, 1998; 48–63.
- 26 Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: toward a better understanding of their mechanism of action. Thermochim. Acta 2006; 449(1-4): 16–26.
- 27 Bugajny M, Bourbigot S, Le Bras M, Delobel R. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym. Int. 1999; 48(4): 264–270.
- 28 Bourbigot S, Le Bras M, Delobel R, Bréant P, Trémillon JM. Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 1995; 33(3): 283–294.
- 29 Bourbigot S, Duquesne S, Sebih Z, Segura S, Delobel R. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene-vinyl acetate copolymer. In Fire and Polymers IV—Materials and Concepts for Hazard Prevention, CA Wilkie, GL Nelson (eds). American Chemical Society: Washington, 2006; 200–212.