Stiffness pairing in soft-hard active-passive actuators
Corresponding Author
Adrian Ehrenhofer
Dreden Center for Intelligent Materials, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Institute of Solid Mechanics, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Adrian Ehrenhofer
Dreden Center for Intelligent Materials, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Institute of Solid Mechanics, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Email: [email protected]
Search for more papers by this authorCorresponding Author
Adrian Ehrenhofer
Dreden Center for Intelligent Materials, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Institute of Solid Mechanics, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Adrian Ehrenhofer
Dreden Center for Intelligent Materials, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Institute of Solid Mechanics, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden
Email: [email protected]
Search for more papers by this authorAbstract
Soft-Hard Active-Passive Embedded Structures (SHAPES) are composites that respond to the environments in which they are embedded. This reaction can be a mechanical actuation, but also an intrinsic computation that yields an adaptation as a result. The actuation capabilities primarily depend on the stiffness combination of the involved materials. Stiffness includes both material parameters (depending on the chosen material model, e.g., the Young's modulus) and geometry parameters (depending on the type of structure, e.g., the beam height). The active properties can be included using the Stimulus Expansion Model, which is based on the analogy of the active reponse to thermal expansion. SHAPES can be designed according to three different behaviors, Case I constrained, Case II combined and Case III free. In the current work, these cases, the modelling and design background, and various examples are presented.
Acknowledgments
I thank for the financial funding of the Dresden Center for Intelligent Materials (DCIM) by the Free State of Saxony and TU Dresden. Open access funding enabled and organized by Projekt DEAL.
References
- 1 A. Ehrenhofer, M. Elstner, A. Filippatos, M. Gude, and T. Wallmersperger Proc. SPIE 11587, (2021), pp. 1016321–15.
- 2 A. Ehrenhofer, S. Binder, G. Gerlach, and T. Wallmersperger, Advanced Engineering Materials 22(7), 2000004 (2020).
- 3 M. Manti, V. Cacucciolo, and M. Cianchetti, IEEE Robotics & Automation Magazine 23(3), 93–106 (2016).
- 4 Y. Bar-Cohen, in: Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges (American Society of Civil Engineers, 2000), chap. 23, pp. 188–196.
- 5 T. F. Otero and J. M. Sansieña, Advanced Materials 10(6), 491–494 (1998).
- 6 M. Porfiri, Journal of Applied Physics 104(10), 104915 (2008).
- 7 I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O'Brien, and E. P. Calius, Journal of Applied Physics 112(4), 041101 (2012).
- 8 M. Franke, A. Ehrenhofer, S. Lahiri, E. F. M. Henke, T. Wallmersperger, and A. Richter, Frontiers in Robotics and AI 7, 178 (2020).
- 9 G. Gerlach and K. F. Arndt, Hydrogel Sensors and Actuators: Engineering and Technology (Springer, Berlin Heidelberg, 2009).
- 10 A. Ehrenhofer, M. Elstner, and T. Wallmersperger, Sensors and Actuators B: Chemical 255(Part 2), 1343 – 1353 (2018).
- 11 A. Ehrenhofer, Mechanics of Advanced Materials and Structures (2022), in press.
- 12 A. Ehrenhofer and T. Wallmersperger, Micromachines 11(6), 541 (2020).
- 13 P. Haupt, Acta Mechanica 100(3-4), 129–154 (1993).
- 14 A. Ehrenhofer, G. Bingel, G. Paschew, M. Tietze, R. Schröder, A. Richter, and T. Wallmersperger, Sensors and Actuators B: Chemical 232, 499–505 (2016).
- 15 A. Ehrenhofer and T. Wallmersperger, PAMM 18(1), e201800176 (2018).
- 16 J. N. Reddy, Mechanics of laminated composite plates and shells: Theory and analysis (CRC press, 2003).
- 17 H. Altenbach, J. Altenbach, and K. Naumenko, Ebene Flächentragwerke (Springer, Berlin, 1998).
- 18 E. Carrera, Archives of Computational Methods in Engineering 10(3), 215–296 (2003).
- 19 M. D'Ottavio, Composite Structures 142, 187–199 (2016).
- 20 A. Ehrenhofer and T. Wallmersperger, Proc. SPIE 10163, (2017), pp. 1016321–15.
- 21 A. Ehrenhofer, T. Wallmersperger, and A. Richter, Proc. SPIE 9800, Behavior and Mechanics of Multifunctional Materials and Composites 2016, (2016).
- 22 A. Ehrenhofer, A. Mieting, S. Pfeil, J. Mersch, C. Cherif, G. Gerlach, and T. Wallmersperger, Proc. SPIE 11375, (2020), pp. 47 – 58.
- 23 A. Winkler, A. Ehrenhofer, T. Wallmersperger, M. Gude, and N. Modler, Procedia Manufacturing 52, 277–282 (2020).
- 24 S. Binder, A. Ehrenhofer, T. Ahmad, C. F. Reiche, F. Solzbacher, and T. Wallmersperger, Proc. SPIE 12042 (2022), pp. 263–275.
- 25 G. M. Whitesides, Angewandte Chemie International Edition 57(16), 4258–4273 (2018).
- 26 M. Hippler, E. Blasco, J. Qu, M. Tanaka, C. Barner-Kowollik, M. Wegener, and M. Bastmeyer, Nature communications 10(1), 1–8 (2019).
- 27 O. Erol, A. Pantula, W. Liu, and D. H. Gracias, Advanced Materials Technologies 4(4), 1900043 (2019).
- 28 N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, and M. Mosavi-Mashhadi, Journal of Intelligent Material Systems and Structures 28(12), 1589–1602 (2017).
- 29 K. F. Arndt, D. Kuckling, and A. Richter, Polymers for Advanced Technologies 11(8-12), 496–505 (2000).
- 30 A. Richter, D. Kuckling, S. Howitz, T. Gehring, and K. F. Arndt, Journal of Microelectromechanical Systems 12(5), 748–753 (2003).
- 31 S. Haefner, P. Frank, M. Elstner, J. Nowak, S. Odenbach, and A. Richter, Lab Chip 16, 3977–3989 (2016).
- 32 D. N. Tran and K. J. Balkus Jr, ACS Catalysis 1(8), 956–968 (2011).
- 33 R. Fei, A. K. Means, A. A. Abraham, A. K. Locke, G. L. Coté, and M. A. Grunlan, Macromolecular Materials and Engineering 301(8), 935–943 (2016).
- 34 S. Pfeil, K. Katzer, A. Kanan, J. Mersch, M. Zimmermann, M. Kaliske, and G. Gerlach, Micromachines 11(3), 298 (2020).
- 35 S. D. Gravert, M. Y. Michelis, S. Rogler, D. Tscholl, T. Buchner, and R. K. Katzschmann, arXiv preprint https://arxiv.org/abs/2208.00731 (2022).
- 36 A. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley, Journal of Intelligent Material Systems and Structures 19(9), 1017–1027 (2008).
- 37 R. W. Guelch, J. Holdenried, A. Weible, T. Wallmersperger, and B. Kroeplin, Proc. SPIE 4329 (2001), pp. 328–334.
- 38 R. Messing and A. M. Schmidt, Polymer Chemistry 2(1), 18–32 (2011).
- 39 R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, Advanced functional materials 22(7), 1376–1384 (2012).
- 40 A. Baz, T. Chen, and J. Ro, Composites Part B: Engineering 31(8), 631–642 (2000).
- 41 W. Wang and S. H. Ahn, Soft Robotics 4(4), 379–389 (2017), PMID: 29251571.
- 42 K. Singh and S. Gupta, Journal of Intelligent & Robotic Systems 106(3), 1–24 (2022).
- 43 H. C. Cho, B. S. Kim, J. J. Park, and J. B. Song, SICE-ICASE International Joint Conference (2006), pp. 1917–1921.
- 44 A. Beck, P. J. Mehner, A. Voigt, F. Obst, U. Marschner, and A. Richter, Advanced Materials Technologies p. 2200185 (2022).
- 45 Q. Zhang, M. Zhang, L. Djeghlaf, J. Bataille, J. Gamby, A. M. Haghiri-Gosnet, and A. Pallandre, Electrophoresis 38(7), 953–976 (2017).