Volume 22, Issue 1 e202200272
Section 10
Open Access

Modeling simultaneous momentum and passive scalar transfer in turbulent annular Poiseuille flow

Pei-Yun Tsai

Pei-Yun Tsai

Lehrstuhl Numerische Strömungs- und Gasdynamik, Brandenburgische Technische Universität Cottbus-Senftenberg, Siemens-Halske-Ring 15A, D-03046 Cottbus, Germany

Search for more papers by this author
Heiko Schmidt

Heiko Schmidt

Lehrstuhl Numerische Strömungs- und Gasdynamik, Brandenburgische Technische Universität Cottbus-Senftenberg, Siemens-Halske-Ring 15A, D-03046 Cottbus, Germany

Search for more papers by this author
Marten Klein

Corresponding Author

Marten Klein

Lehrstuhl Numerische Strömungs- und Gasdynamik, Brandenburgische Technische Universität Cottbus-Senftenberg, Siemens-Halske-Ring 15A, D-03046 Cottbus, Germany

YIG Advanced Modeling and Simulation of Transfer Processes for Next Generation Energy Systems, Scientific Computing Lab, Energie-Innovationszentrum (EIZ), Brandenburgische Technische Universität Cottbus-Senftenberg, Germany

Marten Klein

Lehrstuhl Numerische Strömungs- und Gasdynamik, Brandenburgische Technische Universität Cottbus-Senftenberg, Siemens-Halske-Ring 15A, D-03046 Cottbus, Germany

YIG Advanced Modeling and Simulation of Transfer Processes for Next Generation Energy Systems, Scientific Computing Lab, Energie-Innovationszentrum (EIZ), Brandenburgische Technische Universität Cottbus-Senftenberg, Germany

Email: [email protected]

Telephone: +49 355 695 127

Fax: +49 355 694 891

Search for more papers by this author
First published: 24 March 2023
Citations: 3

Abstract

Simultaneous momentum and passive scalar transfer in weakly heated pressure-driven turbulent concentric annular pipe flow is numerically investigated using the cylindrical formulation of the stochastic one-dimensional turbulence (ODT) model, which is utilized here as standalone tool. In the present study, we focus on the model calibration for heated annular pipes based on recent reference direct numerical simulations (DNS) from Bagheri and Wang (Int. J. Heat Fluid Flow 86, 108725, 2020; Phys. Fluids 33, 055131, 2021). It is shown that the model is able to individually capture scalar and momentum transfer, but not both equally well at the same time. We attribute this to less dissimilar scalar and momentum transport in the model at the low Reynolds number investigated. It is argued that the model prefers a fully developed turbulent state due to its construction. Nevertheless, it is demonstrated that ODT is able to reasonably capture the radial inner-outer asymmetry of the scalar and momentum boundary layers which yields better predictive capabilities than wall-function-based approaches.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.