Volume 16, Issue 1 pp. 361-362
Section 6
Free Access

Modeling of microstructural pattern formation in crystal plasticity

Benjamin Klusemann

Corresponding Author

Benjamin Klusemann

Institute of Product and Process Innovation, Leuphana University of Lüneburg, Volgershall 1, 21339 Lüneburg

Institute of Materials Research, Materials Mechanics, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht

phone +49 4131 677 5141, fax +49 4131 677 5141Search for more papers by this author
First published: 25 October 2016

Abstract

The mechanical behavior of most materials is dictated by a present or emergent underlying microstructure which is a direct result of different, even competing physical mechanisms occurring at lower length scales. In this work, energetic microstructure interaction via different non-convex contributions to the free energy in metals is modeled. For this purpose rate dependent gradient extended crystal plasticity models at the glide-system level are formulated. The non-convex energy serves as the driving force for the emergent microstructure. The competition between the kinetics and the relaxation of the free energy is an essential feature of the model. Non-convexity naturally arises in finite-deformation single-slip crystal plasticity and the results of the gradient model for this case are compared with an effective laminate model based on energy relaxation. Similarities as well as essential differences are observed and explained. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.