A laminate-based framework for switching and microstructure evolution in polycrystalline ferroelectrics
Abstract
This contribution deals with the numerical modelling of polycrystalline ferroelectric materials considering a sequential laminate-based approach established for tetragonal single-crystal ferroelectrics. The particular model [1] is considered and extended to predict the material behaviour of poly-crystal tetragonal ferroelectric ceramics. The derived laminate-based model is implemented in a finite element environment to simulate the time-dependent domain evolution and switching response of a bulk polycrystalline ferroelectric ceramic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)