Thermo-mechanical modeling of crack propagation in dynamically loaded elastomer specimens using a scaled boundary finite element approach
Abstract
Recently, a scaled boundary finite element (SBFE) formulation for geometrically and physically nonlinear materials has been developed using the scaled boundary finite element method (SBFEM). The SBFE formulation has been employed to describe plane stress problems of notched and unnotched hyperelastic elastomer specimens. In this contribution, the derived SBFE formulation is extended to nonlinear time- and temperature-dependent material behavior. Subsequently, the SBFE formulation is incorporated into a crack propagation scheme to model crack propagation in cyclically loaded elastomer specimens of the so-called tear fatigue analyzer (TFA). (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)