Volume 12, Issue 1 pp. 369-370
Section 7
Free Access

Quantifying diffusion for an ultrasonic wire bonding process by applying the theory of material forces

Mohamad Sbeiti

Corresponding Author

Mohamad Sbeiti

Technische Universität Berlin, Fakultät V, Institut für Mechanik, Lehrstuhl für Kontinuumsmechanik und Materialtheorie, Sekr. MS2, Einsteinufer 5, D-10587 Berlin

phone +49 (0)30 314 26440, fax +49 (0)30 314 24499Search for more papers by this author
Wolfgang H. Müller

Wolfgang H. Müller

Technische Universität Berlin, Fakultät V, Institut für Mechanik, Lehrstuhl für Kontinuumsmechanik und Materialtheorie, Sekr. MS2, Einsteinufer 5, D-10587 Berlin

Search for more papers by this author
Martin Schneider-Ramelow

Martin Schneider-Ramelow

Fraunhofer Institut für Zuverlässigkeit und Mikrointegration, Gustav-Meyer-Allee 25, D-13355 Berlin

Search for more papers by this author
Ute Geissler

Ute Geissler

Technische Universität Berlin, Fakultät IV, FSP Mikroperipherik, Gustav-Meyer-Allee 25, D-13355 Berlin

Search for more papers by this author
Stefan Schmitz

Stefan Schmitz

Fraunhofer Institut für Zuverlässigkeit und Mikrointegration, Gustav-Meyer-Allee 25, D-13355 Berlin

Search for more papers by this author
First published: 03 December 2012
Citations: 1

Abstract

Ultrasonic wire bonding is a method applied in electronic packaging to fabricate interconnections between two devices at ambient temperature. In order to investigate the material diffusion during this process, the occurring thermal and mechanical mechanisms at and around the interface of the formed bond were studied by means of coupled thermo-mechanical FE simulations. Within the framework of material forces the local jump of the Eshelby tensor was compared with the thickness of the formed intermetallic phase for various bonding parameters. This allows us to predict an effective diffusion constant which takes temperature and mechanical driving forces into account. After this relation has been established a subsequent objective of our investigations is to optimize the growth of the Au8Al3 intermetallic phase in terms of bonding parameters. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.