A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid
Corresponding Author
S. Brunssen
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, Germany
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, GermanySearch for more papers by this authorF. Schmid
Department of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Search for more papers by this authorM. Schäfer
Department of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Search for more papers by this authorB. Wohlmuth
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, Germany
Search for more papers by this authorCorresponding Author
S. Brunssen
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, Germany
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, GermanySearch for more papers by this authorF. Schmid
Department of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Search for more papers by this authorM. Schäfer
Department of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Search for more papers by this authorB. Wohlmuth
Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, 70569 Stuttgart, Germany
Search for more papers by this authorAbstract
For extending the usability of implicit FE codes for large-scale forming simulations, the computation time has to be decreased dramatically. In principle this can be achieved by using iterative solvers. In order to facilitate the use of this kind of solvers, one needs a contact algorithm which does not deteriorate the condition number of the system matrix and therefore does not slow down the convergence of iterative solvers like penalty formulations do. Additionally, an algorithm is desirable which does not blow up the size of the system matrix like methods using standard Lagrange multipliers. The work detailed in this paper shows that a contact algorithm based on a primal-dual active set strategy provides these advantages and therefore is highly efficient with respect to computation time in combination with fast iterative solvers, especially algebraic multigrid methods. Copyright © 2006 John Wiley & Sons, Ltd.
REFERENCES
- 1 Laursen TA. Computational Contact and Impact Mechanics. Springer: Berlin, 2002.
- 2 Puso MA, Laursen TA. A mortar segment-to-segment contact method for large deformation solid mechanics. Computational Methods in Applied Mechanical Engineering 2004; 193: 601–629.
- 3 Wriggers P, Fischer K. Recent new developments in contact mechanics. Proceedings of the 4th European LS-DYNA Users Conference, Ulm, 2003.
- 4 Wriggers P, Fischer K. Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics 2005; 36: 226–244.
- 5 Wriggers P. Computational Contact Mechanics. Wiley: New York, 2002.
- 6 Wriggers P, Zavarise G. Computational Contact Mechanics, E Stein, R De Borst, T Hughes (eds). Encyclopedia of Computational Mechanics, Solids and Structures, vol. 2. Wiley: New York, 2004; 195–221. ISBN 0-470-84699-2.
- 7 Willner K. Kontinuums- und Kontaktmechanik. Springer: Berlin, Heidelberg, 2003.
10.1007/978-3-642-55814-6 Google Scholar
- 8 Alart P, Curnier A. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering 1991; 92: 353–375.
- 9 Hintermüller M, Ito K, Kunisch K. The primal-dual active set strategy as semi-smooth Newton method. SIAM Journal on Optimization 2003; 13(3): 865–888.
- 10 Dostal Z, Friedlander A, Santos SA. Solution of Coercive and Semicoercive Contact Problems by FETI Domain Decomposition. Contemporary Mathematics, vol. 218. 1998.
- 11 Krause R. Monotone multigrid methods for signorini's problem with friction. Ph.D. Thesis, Freie Universität, Berlin, 2001.
- 12 Kornhuber R. Monotone multigrid methods for elliptic variational inequalities, I. Numerische Mathematik 1994; 69(2): 167–184.
- 13 Cleary AJ, Falgout RD, Henson VE, Jones JE, Manteuffel TA, McCormick SF, Miranda GN, Ruge JW. Robustness and scalability of algebraic multigrid. SIAM Journal on Scientific Computing 2000; 21(5): 1886–1908.
- 14 Stüben K. Algebraic multigrid (AMG), an introduction with applications. GMD Report 70, St. Augustin, 1999.
- 15 Diez R, Hindenlang U, Kurz A. LARSTRAN User's Manual—LARSTRAN Documentation, Stuttgart, 1996.
- 16 Hüeber S, Wohlmuth B. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering 2005; 194: 3147–3166.
- 17 Wohlmuth B. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis 2000; 38: 989–1012.
- 18 Kikuchi N, Song Y. Penalty/finite-element approximation of a class of unilateral problems in linear elasticity. Quarterly of Applied Mathematics 1981; 39(1): 1–22.
- 19 Ben Belgacem F, Hild P, Laborde P. Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Mathematical Models and Methods in Applied Sciences 1999; 9: 287–303.
- 20 Ben Belgacem F, Renard Y. Hybrid finite element methods for the Signorini problem. Mathematics of Computating 2003; 72(243): 1117–1145.
- 21 Ben Belgacem F, Hild P, Laborde P. Approximation of the unilateral contact problem by the mortar finite element method. Comptes Rendus de l Academie des Sciences Serie II, Paris 1997; 324(1): 123–127.
- 22 Christensen PW, Pang J-S. Frictional contact algorithms based on semismooth Newton methods. International Journal for Numerical Methods in Engineering 1998; 42: 145–173.
- 23 Hackbusch W. Multi-Grid Methods and Applications. Springer: Berlin, Heidelberg, New York, Tokyo, 1985.
10.1007/978-3-662-02427-0 Google Scholar
- 24 Kornhuber R, Krause R. Adaptive multigrid methods for Signorini's problem in linear elasticity. Computing and Visualization 2001; 4(1): 9–20.
10.1007/s007910100052 Google Scholar
- 25 Henson VE. An algebraic multigrid tutorial. Copper Mountain Conference, 2003.
- 26 Briggs WL, Henson VE, McCormick S. A Multigrid Tutorial ( 2nd edn). SIAM: Philadelphia, 2000.
10.1137/1.9780898719505 Google Scholar
- 27 Ruge JW, Stüben K. In Algebraic Multigrid, Multigrid Methods, S McCormick (ed.). Frontiers in Applied Mathematics SIAM: Philadelphia, 1987.
- 28 Benzi M. Preconditioning techniques for large linear systems: a survey. Journal of Computational Physics 2002; 182: 418–477.
- 29 Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. Wiley: New York, 2000.
- 30 Han W, Reddy BD. Plasticity, Mathematical Theory and Numerical Analysis. Springer: Berlin, 1999.
- 31 Han W, Sofonea M. Numerical analysis of a frictionless contact problem for elastic-viscoplastic materials. Computer Methods in Applied Mechanics and Engineering 2000; 190(1–2): 179–191.
- 32 Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, International Press: Providence, RI, U.S.A., 2002.
10.1090/amsip/030 Google Scholar
- 33 Rochdi M, Sofonea M. On frictionless contact between two elastic-viscoplastic bodies. Quarterly Journal of Mechanics and Applied Mathematics 1997; 50(3): 481–496.