Evaluation of the neuromuscular junction in a middle-aged mouse model of congenital myasthenic syndrome
Luana Pereira Leite Schetino MS, PhD
Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
Search for more papers by this authorMatheus de Castro Fonseca MS, PhD
Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
Search for more papers by this authorMatheus Proença Simão Magalhães Gomes MS, PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorPriscila Aparecida Costa Valadão MS, PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorWallace Lucio de Camargo MS
Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorHermann Alecsandro Rodrigues MS, PhD
Departamento de Ciências Básicas da Vida, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Minas Gerais, Brazil
Search for more papers by this authorJéssica Neves Andrade MS
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorFernanda Magalhães Arantes-Costa MS, PhD
Departamento de Medicina, Escola de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
Search for more papers by this authorLígia Araujo Naves MS, PhD
Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorCarla Máximo Prado PhD
Departmento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, São Paulo, Brazil
Search for more papers by this authorVânia Ferreira Prado PhD
Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorMarco Antônio Máximo Prado MS, PhD
Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorCorresponding Author
Cristina Guatimosim PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Correspondence
Cristina Guatimosim, Universidade Federal de Minas Gerais, Av Pres Antônio Carlos, Belo Horizonte, 6627 MG, 31270-901, Brazil.
Email: [email protected]
Search for more papers by this authorLuana Pereira Leite Schetino MS, PhD
Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
Search for more papers by this authorMatheus de Castro Fonseca MS, PhD
Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
Search for more papers by this authorMatheus Proença Simão Magalhães Gomes MS, PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorPriscila Aparecida Costa Valadão MS, PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorWallace Lucio de Camargo MS
Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorHermann Alecsandro Rodrigues MS, PhD
Departamento de Ciências Básicas da Vida, Instituto de Ciências da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Minas Gerais, Brazil
Search for more papers by this authorJéssica Neves Andrade MS
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorFernanda Magalhães Arantes-Costa MS, PhD
Departamento de Medicina, Escola de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
Search for more papers by this authorLígia Araujo Naves MS, PhD
Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Search for more papers by this authorCarla Máximo Prado PhD
Departmento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, São Paulo, Brazil
Search for more papers by this authorVânia Ferreira Prado PhD
Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorMarco Antônio Máximo Prado MS, PhD
Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
Search for more papers by this authorCorresponding Author
Cristina Guatimosim PhD
Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
Correspondence
Cristina Guatimosim, Universidade Federal de Minas Gerais, Av Pres Antônio Carlos, Belo Horizonte, 6627 MG, 31270-901, Brazil.
Email: [email protected]
Search for more papers by this authorFunding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Fundação de Amparo à Pesquisa do Estado de Minas Gerais; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: 2018/20014-0
Abstract
Introduction
Reduced expression of the vesicular acetylcholine transporter (VAChT) leads to changes in the distribution and shape of synaptic vesicles (SVs) at neuromuscular junctions (NMJs), suggesting vesicular acetylcholine (ACh) as a key component of synaptic structure and function. It is poorly understood how long-term changes in cholinergic transmission contribute to age- and disease-related degeneration in the motor system.
Methods
In this study we performed confocal imaging, electrophysiology, electron microscopy, and analyses of respiratory mechanics of the diaphragm NMJ components in 12-month-old wild-type (WT) and VAChTKDHOM mice.
Results
Diaphragms of NMJs of the VAChTKDHOM mice were similar to those in WT mice in number, colocalization, and fragmentation of pre−/postsynaptic components. However, they had increased spontaneous SV exocytosis, miniature endplate potential frequency, and diminished MEPP amplitude. No impairment in respiratory mechanics at rest was observed, probably due to the large neurotransmission safety factor of the diaphragm.
Discussion
The present findings help us to understand the consequences of reduced ACh release at the NMJs during aging.
CONFLICT OF INTEREST
The authors declare no potential conflicts of interest.
REFERENCES
- 1Lorenzoni PJ, Scola RH, Kay CS, Werneck LC. Congenital myasthenic syndrome: a brief review. Pediatr Neurol. 2012; 46: 141-148.
- 2Van der Kloot W, Molgo J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev. 1994; 74: 899-991.
- 3Erickson JD, Varoqui H, Schafer MK, et al. Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J Biol Chem. 1994; 269: 21929-21932.
- 4Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013; 450: 265-274.
- 5O'Grady GL, Verschuuren C, Yuen M, et al. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurology. 2016; 87: 1442-1448.
- 6Schwartz M, Sternberg D, Whalen S, et al. How chromosomal deletions can unmask recessive mutations? Deletions in 10q11.2 associated with CHAT or SLC18A3 mutations lead to congenital myasthenic syndrome. Am J Med Genet Part A. 2018; 176: 151-155.
- 7Aran A, Segel R, Kaneshige K, et al. Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology. 2017; 88: 1021-1028.
- 8de Castro BM, De Jaeger X, Martins-Silva C, et al. The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol Cell Biol. 2009; 29: 5238-5250.
- 9Lima Rde F, Prado VF, Prado MA, Kushmerick C. Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter. J Neurochem. 2010; 113: 943-951.
- 10Prado VF, Martins-Silva C, de Castro BM, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006; 51: 601-612.
- 11Magalhaes-Gomes MPS, Motta-Santos D, Schetino LPL, et al. Fast and slow-twitching muscles are differentially affected by reduced cholinergic transmission in mice deficient for VAChT: a mouse model for congenital myasthenia. Neurochem Int. 2018; 120: 1-12.
- 12Rodrigues HA, Fonseca Mde C, Camargo WL, et al. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction. PLoS One. 2013; 8:e78342.
- 13Balice-Gordon RJ. Age-related changes in neuromuscular innervation. Muscle Nerve. 1997; 5(Suppl): S83-S87.
- 14Apel PJ, Alton T, Northam C, et al. How age impairs the response of the neuromuscular junction to nerve transection and repair: an experimental study in rats. J Orthopaed Res. 2009; 27: 385-393.
- 15Johnson AM, Connor NP. Effects of electrical stimulation on neuromuscular junction morphology in the aging rat tongue. Muscle Nerve. 2011; 43: 203-211.
- 16Valdez G, Tapia JC, Kang H, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci. 2010; 107: 14863-14868.
- 17Deschenes MR. Effects of aging on muscle fibre type and size. Sports Med. 2004; 34: 809-824.
- 18Jang YC, Van Remmen H. Age-associated alterations of the neuromuscular junction. Exp Gerontol. 2011; 46: 193-198.
- 19Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One. 2011; 6:e28090.
- 20Li Y, Lee Y, Thompson WJ. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci. 2011; 31: 14910-14919.
- 21Nevitt MC, Cummings SR, Kidd S, Black D. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA. 1989; 261: 2663-2668.
- 22Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004; 52: 1121-1129.
- 23Carnieli DS, Yoshioka E, Silva LF, et al. Inflammation and remodeling in infantile, juvenile, and adult allergic sensitized mice. Pediatr Pulmonol. 2011; 46: 650-665.
- 24Lomask M. Further exploration of the Penh parameter. Exper Toxicol Pathol. 2006; 57(Suppl 2): 13-20.
- 25Goetz I, Hoo AF, Lum S, Stocks J. Assessment of passive respiratory mechanics in infants: double versus single occlusion? Eur Respir J. 2001; 17: 449-455.
- 26Betz WJ, Mao F, Bewick GS. Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. J Neurosci. 1992; 12: 363-375.
- 27Rodrigues HA, Lima RF, Fonseca Mde C, et al. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction. Eur J Neurosci. 2013; 38: 2978-2987.
- 28Lara A, Damasceno DD, Pires R, et al. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure. Mol Cell Biol. 2010; 30: 1746-1756.
- 29Greising SM, Ermilov LG, Sieck GC, Mantilla CB. Ageing and neurotrophic signalling effects on diaphragm neuromuscular function. J Physiol. 2015; 593: 431-440.
- 30Greising SM, Medina-Martinez JS, Vasdev AK, Sieck GC, Mantilla CB. Analysis of muscle fiber clustering in the diaphragm muscle of sarcopenic mice. Muscle Nerve. 2015; 52: 76-82.
- 31Fogarty MJ, Gonzalez Porras MA, Mantilla CB, Sieck GC. Diaphragm neuromuscular transmission failure in aged rats. J Neurophysiol. 2019; 122(1): 93-104.
- 32Paton WD, Waud DR. Neuromuscular blocking agents. Br J Anaesth. 1962; 34: 251-259.
- 33Wood SJ, Slater CR. Safety factor at the neuromuscular junction. Progr Neurobiol. 2001; 64: 393-429.
- 34Hughes BW, Kusner LL, Kaminski HJ. Molecular architecture of the neuromuscular junction. Muscle Nerve. 2006; 33: 445-461.
- 35Khanna S, Porter JD. Conservation of synapse-signaling pathways at the extraocular muscle neuromuscular junction. Ann NY Acad Sci. 2002; 956: 394-396.
- 36Wood SJ, Slater CR. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J Physiol. 1997; 500: 165-176.
- 37Sterz R, Pagala M, Peper K. Postjunctional characteristics of the endplates in mammalian fast and slow muscles. Pflugers Arch. 1983; 398: 48-54.
- 38Polla B, D'Antona G, Bottinelli R, Reggiani C. Respiratory muscle fibres: specialisation and plasticity. Thorax. 2004; 59: 808-817.
- 39Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000; 522: 165-175.
- 40Blank S, Chen V, Ianuzzo CD. Biochemical characteristics of mammalian diaphragms. Respir Physiol. 1988; 74: 115-125.
- 41Prakash YS, Miller SM, Huang M, Sieck GC. Morphology of diaphragm neuromuscular junctions on different fibre types. J Neurocytol. 1996; 25: 88-100.
- 42Ermilov LG, Mantilla CB, Rowley KL, Sieck GC. Safety factor for neuromuscular transmission at type-identified diaphragm fibers. Muscle Nerve. 2007; 35: 800-803.
- 43Sieck DC, Zhan WZ, Fang YH, Ermilov LG, Sieck GC, Mantilla CB. Structure-activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions. Respir Physiol Neurobiol. 2012; 180: 88-96.
- 44Mier A, Laroche C, Green M. Unsuspected myasthenia gravis presenting as respiratory failure. Thorax. 1990; 45: 422-423.
- 45Ringqvist I, Ringqvist T. Changes in respiratory mechanics in myasthenia gravis with therapy. Counteracting effects of anticholinesterase. Acta Med Scand. 1971; 190: 509-518.
- 46Jani-Acsadi A, Lisak RP. Myasthenic crisis: guidelines for prevention and treatment. J Neurol Sci. 2007; 261: 127-133.
- 47Wendell LC, Levine JM. Myasthenic crisis. Neurohospitalist. 2011; 1: 16-22.
- 48Qureshi AI, Choundry MA, Mohammad Y, et al. Respiratory failure as a first presentation of myasthenia gravis. Med Sci Monit. 2004; 10: CR684-CR689.
- 49Bhattacharyya BJ, Tsen K, Sokoll MD. Age-induced alteration of neuromuscular transmission: effect of halothane. Eur J Pharmacol. 1994; 254: 97-104.
- 50Willadt S, Nash M, Slater CR. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci Rep. 2016; 6: 24849.
- 51Banker BQ, Kelly SS, Robbins N. Neuromuscular transmission and correlative morphology in young and old mice. J Physiol. 1983; 339: 355-377.
- 52Park KH. Mechanisms of muscle denervation in aging: insights from a mouse model of amyotrophic lateral sclerosis. Aging Dis. 2015; 6: 380-389.
- 53Valadas A, de Carvalho M. Myasthenia gravis and respiratory failure related to phrenic nerve lesion. Muscle Nerve. 2008; 38: 1340-1341.