Phenotypic variability in myotonia congenita
Corresponding Author
Eskild Colding-Jørgensen MD
Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, Denmark
Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, DenmarkSearch for more papers by this authorCorresponding Author
Eskild Colding-Jørgensen MD
Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, Denmark
Department of Clinical Neurophysiology 19, Glostrup Hospital, University of Copenhagen DK-2600 Glostrup, DenmarkSearch for more papers by this authorAbstract
Myotonia congenita is a hereditary chloride channel disorder characterized by delayed relaxation of skeletal muscle (myotonia). It is caused by mutations in the skeletal muscle chloride channel gene CLCN1 on chromosome 7. The phenotypic spectrum of myotonia congenita ranges from mild myotonia disclosed only by clinical examination to severe and disabling myotonia with transient weakness and myopathy. The most severe phenotypes are seen in patients with two mutated alleles. Heterozygotes are often asymptomatic but for some mutations heterozygosity is sufficient to cause pronounced myotonia, although without weakness and myopathy. Thus, the phenotype depends on the mutation type to some extent, but this does not explain the fact that severity varies greatly between heterozygous family members and may even vary with time in the individual patient. In this review, existing knowledge about phenotypic variability is summarized, and the possible contributing factors are discussed. Muscle Nerve, 2005
REFERENCES
- 1 Accardi A, Miller C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl− channels. Nature 2004; 427: 803–807.
- 2 Accardi A, Pusch M. Fast and slow gating relaxations in the muscle chloride channel CLC-1. J Gen Physiol 2000; 116: 433–444.
- 3 Ackerman MJ, Wickman KD, Clapham DE. Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol 1994; 103: 153–179.
- 4 Adrian RH, Bryant SH. On the repetitive discharge in myotonic muscle fibres. J Physiol (Lond) 1974; 240: 505–515.
- 5 Adrian RH, Chandler WK, Hodgkin AL. Voltage clamp experiments in striated muscle fibres. J Physiol (Lond) 1970; 208: 607–644.
- 6 Al-Chalabi A, Andersen PM, Chioza B, Shaw C, Sham PC, Robberecht W, et al. Recessive amyotrophic lateral sclerosis families with the D90A SOD1 mutation share a common founder: evidence for a linked protective factor. Hum Mol Genet 1998; 7: 2045–2050.
- 7 Aminoff MJ, Layzer RB, Satya-Murti S, Faden AI. The declining electrical response of muscle to repetitive nerve stimulation in myotonia. Neurology 1977; 27: 812–816.
- 8 Aromataris EC, Rychkov GY, Bennetts B, Hughes BP, Bretag AH, Roberts ML. Fast and slow gating of CLC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations. Mol Pharmacol 2001; 60: 200–208.
- 9 Barchi RL. Myotonia. An evaluation of the chloride hypothesis. Arch Neurol 1975; 32: 175–180.
- 10 Barchi RL. The pathophysiology of excitation in skeletal muscle. In: G Karpati, D Hilton-Jones, RC Griggs, editors. Disorders of voluntary muscle, 7th ed. Cambridge: Cambridge University Press; 2001. p 168–186.
- 11 Becker PE. Myotonia congenita and syndromes associated with myotonia. Stuttgart: Thieme; 1977.
- 12 Birnberger KL, Rüdel R, Struppler A. Clinical and electrophysiological observations in patients with myotonic muscle disease and the therapeutic effect of N-propyl-ajmalin. J Neurol 1975; 210: 99–110.
- 13 Birnberger KL, Klepzig M. Influence of extracellular potassium and intracellular pH on myotonia. J Neurol 1979; 222: 23–35.
- 14 Blessing W, Walsh JC. Myotonia precipitated by propranolol therapy. Lancet 1977; 1: 73–74.
- 15 Brandt S, Jentsch TJ. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett 1995; 377: 15–20.
- 16 Bretag AH. Paradoxical decrease of myotonia by cold. Proc Austr Physiol Pharmacol Soc 1975; 6: 131.
- 17 Brodie C, Sampson SR. Characterization of thyroid hormone effects on NaK pump and membrane potential of cultured rat skeletal muscle. Endocrinology 1988; 123: 981–987.
- 18 Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799–808.
- 19 Brown JC. Muscle weakness after rest in myotonic disorders: an electrophysiological study. J Neurol Neurosurg Psychiatry 1974; 37: 1336–1342.
- 20 Brugnoni R, Galantini S, Confalonieri P, Balestrini MR, Cornelio F, Mantegazza R. Identification of three novel mutations in the major human skeletal muscle chloride channel gene (CLCN1), causing myotonia congenita. Hum Mutat 1999; 14: 447.
- 21 Bryant SH, Lipicky RJ, Herzog WH. Variability of myotonic signs in myotonic goats. Am J Vet Res 1968; 29: 2371–2381.
- 22 Bryant SH, Morales-Aguilera A. Chloride conductance in normal and myotonic muscle fibres and the action of monocarboxylic aromatic acids. J Physiol 1971; 219: 367–383.
- 23 Buyse G, Voets T, Tytgat J, De Greef C, Droogmans G, Nilius B, et al. Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J Biol Chem 1997; 272: 3615–3621.
- 24 Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10: 45–53.
- 25 Chen MF, Niggeweg R, Iaizzo PA, Lehmann-Horn F, Jockusch H. Chloride conductance in mouse muscle is subject to post-transcriptional compensation of the functional Cl− channel 1 gene dosage. J Physiol (Lond) 1997; 504: 75–81.
- 26 Chen JT, Taivassalo T, Argov Z, Arnold DL. Modeling in vivo recovery of intracellular pH in muscle to provide a novel index of proton handling: application to the diagnosis of mitochondrial myopathy. Magn Reson Med 2001; 46: 870–878.
- 27 Chen L, Lang D, Joncourt F, Gallati S, Burgunder J-M. 2001. www.medecine.unige.ch/ssn/abstracts2001/pharmacol.htm.
- 28 Chen L, Schaerer M, Lu ZH, Lang D, Joncourt F, Weis J, et al. Exon 17 skipping in CLCN1 leads to recessive myotonia congenita. Muscle Nerve 2004; 29: 670–676.
- 29 Clausen T. Na+K+ pump regulation and skeletal muscle contractility. Physiol Rev 2003; 83: 1269–1324.
- 30 Colding-Jørgensen E, Dunø M, Schwartz M, Vissing J. Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve 2003; 27: 449–455.
- 31
Curschmann H.
Über familiäre atrophische Myotonie.
Dtsch Z Nervenhkd
1912;
45:
161–202.
10.1007/BF01629597 Google Scholar
- 32 de Diego C, Gamez J, Plassart-Schiess E, Lasa A, Del Rio E, Cervera C, Baiget M, et al. Novel mutations in the muscle chloride channel CLCN1 gene causing myotonia congenita in Spanish families. J Neurol 1999; 246: 825–829.
- 33
Deymeer F,
Cakirkaya S,
Serdaroglu P,
Schleithoff L,
Lehmann-Horn F,
Rüdel R, et al.
Transient weakness and compound muscle action potential decrement in myotonia congenita.
Muscle Nerve
1998;
21:
1334–1337.
10.1002/(SICI)1097-4598(199810)21:10<1334::AID-MUS16>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 34 Du XL, Zhu Z, Fu Q, Li DK, Xu WB. Pharmacokinetics and relative bioavailability of salbutamol metered-dose inhaler in healthy volunteers. Acta Pharmacol (Singapore) 2002; 23: 663–666.
- 35 Dunø M, Colding-Jørgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M. Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet 2004; 12: 738–743.
- 36 Durelli L, Mutani R, Piredda S, Fassio F, Delsedime M. The quantification of myotonia. A problem in the evaluation of new antimyotonic drugs. J Neurol Sci 1983; 59: 167–173.
- 37 Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 2002; 415: 287–294.
- 38 Esteban J, Neumeyer AM, McKenna-Yasek D, Brown RH. Identification of two mutations and a polymorphism in the chloride channel CLCN1 in patients with Becker's generalized myotonia. Neurogenetics 1998; 1: 185–188.
- 39 Eulenburg A. Über eine familiäre, durch 6 Generationen verfolgbare Form congenitaler paramyotonie. Neurol Zentralbl 1886; 5: 265–272.
- 40 Fahlke C, Rüdel R, Mitrovic N, Zhou M, George AL Jr. An aspartic acid residue important for voltage-dependent gating of human muscle chloride channels. Neuron 1995; 15: 463–472.
- 41 Fahlke C, Beck CL, George AL Jr. A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel. Proc Natl Acad Sci USA 1997; 94: 2729–2734.
- 42 Forsum E, Forsberg AM, Nilsson E, Bergström J, Hultman E. Electrolytes, water, RNA, total creatine and calculated resting membrane potential in muscle tissue from pregnant women. Ann Nutr Metab 2000; 44: 144–149.
- 43 Gardiner CF. A case of myotonia congenita. Arch Pediatr 1901; 18: 925–928.
- 44 George AL Jr, Crackower MA, Abdalla JA, Hudson AJ, Ebers GC. Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita). Nat Genet 1993; 3: 305–310.
- 45 George AL Jr, Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R, Pascuzzi RM. Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet 1994; 3: 2071–2072.
- 46 Grunnet M, Jespersen T, Colding-Jørgensen E, Schwartz M, Klaerke DA, Vissing J, et al. Characterization of two new dominant ClC-1 channel mutations associated with myotonia. Muscle Nerve 2003; 28: 722–732.
- 47 Hakim CA, Thomlinson J. Myotonia congenita in pregnancy. J Obstet Gynaecol 1969; 76: 561–562.
- 48 Hegyeli A, Szent-Györgyi A. Water and myotonia in goats. Science 1961; 133: 1011.
- 49 Heine R, Pika U, Lehmann-Horn F. A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum Mol Genet 1993; 2: 1349–1353.
- 50 Heine R, George AL Jr, Pika U, Deymeer F, Rüdel R, Lehmann-Horn F. Proof of a non-functional muscle chloride channel in recessive myotonia congenita (Becker) by detection of a 4 base pair deletion. Hum Mol Genet 1994; 3: 1123–1128.
- 51 Herbst M, Piontek P. Über den Verlauf des intracellulären pH-Wertes des Skeletmuskels während der Kontraktion. Pflügers Arch 1972; 335: 213–223.
- 52 Jentsch TJ. Chloride channels are different. Nature 2002; 415: 276–277.
- 53 Jou SB, Chang LI, Pan H, Chen PR, Hsiao KM. Novel CLCN1 mutations in Taiwanese patients with myotonia congenita. J Neurol 2004; 251: 666–670.
- 54 Kennedy F, Wolf A. Experiments with quinine and prostigmine in treatment of myotonia and myasthenia. Arch Neurol Psychiatry 1937; 37: 68.
- 55 Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 1992; 257: 797–800.
- 56 Koty PP, Pegoraro E, Hobson G, Marks HG, Turel A, Flagler D, et al. Myotonia and the muscle chloride channel: dominant mutations show variable penetrance and founder effect. Neurology 1996; 47: 963–968.
- 57 Kowdley GC, Ackerman SJ, John JE III, Jones LR, Moorman JR. Hyperpolarization-activated chloride currents in Xenopus oocytes. J Gen Physiol 1994; 103: 217–230.
- 58 Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ. ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence. Hum Mol Genet 1998; 7: 1753–1760.
- 59 Kuntzer T, Flocard F, Vial C, Kohler A, Magistris MR, Labarre-Vila A, et al. Exercise test in muscle channelopathies and other muscle disorders. Muscle Nerve 2000; 23: 1089–1094.
- 60 Kwiecinski H, Lehmann-Horn F, Rüdel R. Drug-induced myotonia in human intercostal muscle. Muscle Nerve 1988; 11: 576–581.
- 61 Lacomis D, Gonzales JT, Giuliani MJ. Fluctuating clinical myotonia and weakness from Thomsen's disease occurring only during pregnancies. Clin Neurol Neurosurg 1999; 101: 133–136.
- 62 Lehmann-Horn F, Höpfel D, Rüdel R, Ricker K, Küther G. In vivo P-NMR spectroscopy: muscle energy exchange in paramyotonia patients. Muscle Nerve 1985; 8: 606–610.
- 63 Lehmann-Horn F, Mailänder V, Heine R, George AL. Myotonia levior is a chloride channel disorder. Hum Mol Genet 1995; 4: 1397–1402.
- 64 Lindsley DB, Curnen EC. An electromyographic study of myotonia. Arch Neurol Psychiatry 1936; 35: 253–269.
- 65 Lipicky RJ, Bryant SH, Salmon JH. Cable parameters, sodium, potassium, chloride, and water content, and potassium efflux in isolated external intercostal muscle of normal volunteers and patients with myotonia congenita. J Clin Invest 1971; 50: 2091–2103.
- 66 Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, et al. Allelic variation in gene expression is common in the human genome. Genome Res 2003; 13: 1855–1862.
- 67 Logigian EL, Moxley RT, Blood CL, Barbieri CA, Martens WB, Wiegner AW, et al. Leukocyte CTG repeat length correlates with severity of myotonia in myotonic dystrophy type 1. Neurology 2004; 62: 1081–1089.
- 68 Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ. Genomic organization of the human muscle chloride channel CLC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet 1994; 3: 941–946.
- 69 Lorenz C, Pusch M, Jentsch TJ. Heteromultimeric CLC chloride channels with novel properties. Proc Natl Acad Sci USA 1996; 93: 13362–13366.
- 70 Maas O, Paterson AS. The identity of myotonia congenita (Thomsen's disease), dystrophia myotonica (myotonia atrophica) and paramyotonia. Brain 1939; 62: 198–212.
- 71 Mailänder V, Heine R, Deymeer F, Lehmann-Horn F. Novel muscle chloride channel mutations and their effects on heterozygous carriers. Am J Hum Genet 1996; 58: 317–324.
- 72 Meola G, Sansone V. Therapy in myotonic disorders and in muscle channelopathies. Neurol Sci 2000; 21(suppl): S953–S961.
- 73 Meyer MC, Brayden JE, McLaughlin MK. Characteristics of vascular smooth muscle in the maternal resistance circulation during pregnancy in the rat. Am J Obstet Gynecol 1993; 169: 1510–1516.
- 74 Meyer-Kleine C, Ricker K, Otto M, Koch MC. A recurrent 14bp deletion in the CLCN1 gene associated with generalized myotonia (Becker). Hum Mol Genet 1994; 3: 1015–1016.
- 75 Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC. Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 1995; 57: 1325–1334.
- 76 Miledi R, Parker I. Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol (Lond) 1984; 357: 173–183.
- 77 Nagamitsu S, Matsuura T, Khajavi M, Armstrong R, Gooch C, Harati Y, et al. A ‘dystrophic’ variant of autosomal recessive myotonia congenita caused by novel mutations in the CLCN1 gene. Neurology 2000; 55: 1697–1703.
- 78 Nielsen VK, Friis ML, Johnsen T. Electromyographic distinction between paramyotonia congenita and myotonia congenita: effect of cold. Neurology 1982; 32: 827–832.
- 79 Nissen K. Beiträge zur Kenntnis der Thomsen'schen Krankheit (myotonia congenita) mit besonderer Berücksichtigung des hereditären Moments und seiner Beziehung zu den Mendelschen Vererbungsregeln. Z Klin Med 1923; 97: 58.
- 80 Papponen H, Toppinen T, Baumann P, Myllyla V, Leisti J, Kuivaniemi H, et al. Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology 1999; 53: 297–302.
- 81 Plassart-Schiess E, Gervais A, Eymard B, Lagueny A, Pouget J, Warter JM, et al. Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology 1998; 50: 1176–1179.
- 82 Pusch M, Steinmeyer K, Koch MC, Jentsch TJ. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CLC-1 chloride channel. Neuron 1995; 15: 1455–1463.
- 83 Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 2002; 19: 423–434.
- 84 Ricker K, Haass A, Glotzner F. Fenoterol precipitating myotonia in a minimally affected case of recessive myotonia congenita. J Neurol 1978; 219: 279–282.
- 85 Ricker K, Hertel G, Langscheid K, Stodieck G. Myotonia not aggravated by cooling: force and relaxation of the adductor pollicis in normal subjects and in myotonia as compared to paramyotonia. J Neurol 1977; 216: 9–20.
- 86 Ricker K, Moxley RT III, Heine R, Lehmann-Horn F. Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol 1994; 51: 1095–1102.
- 87 Ryan A, Rüdel R, Kuchenbecker M, Fahlke C. A novel alteration of muscle chloride channel gating in myotonia levior. J Physiol (Lond) 2002; 545: 345–354.
- 88 Sabouraud O, Bourel M, Chatel M, Le Bars J. Faiblesse musculaire corrigée par l'exercise accompagnant une hypertrophie musculaire avec myotonie. Rev Neurol (Paris) 1965; 112: 546–549.
- 89
Sangiuolo F,
Botta A,
Mesoraca A,
Servidei S,
Merlini L,
Fratta G, et al.
Identification of five new mutations and three novel polymorphisms in the muscle chloride channel gene (CLCN1) in 20 Italian patients with dominant and recessive myotonia congenita. Mutations in brief no. 118 [online].
Hum Mutat
1998;
11:
331.
10.1002/(SICI)1098-1004(1998)11:4<331::AID-HUMU13>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 90 Sasaki R, Ichiyasu H, Ito N, Ikeda T, Takano H, Ikeuchi T, et al. Novel chloride channel gene mutations in two unrelated Japanese families with Becker's autosomal recessive generalized myotonia. Neuromuscul Disord 1999; 9: 587–592.
- 91 Sasaki R, Ito N, Shimamura M, Murakami T, Kuzuhara S, Uchino M, et al. A novel CLCN1 mutation: P480T in a Japanese family with Thomsen's myotonia congenita. Muscle Nerve 2001; 24: 357–363.
- 92 Saviane C, Conti F, Pusch M. The muscle chloride channel CLC-1 has a double barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 1999; 113: 457–467.
- 93 Sholl JS, Hughey MJ, Hirschmann RA. Myotonic muscular dystrophy associated with ritodrine tocolysis. Am J Obstet Gynecol 1985; 151: 83–86.
- 94 Simpson BJ, Height TA, Rychkov GY, Nowak KJ, Laing NG, Hughes BP, et al. Characterization of three myotonia-associated mutations of the CLCN1 chloride channel gene via heterologous expression. Hum Mutat 2004; 24: 185.
- 95 Sloan Brown K, George AL Jr. Inheritance of three distinct muscle chloride channel gene (CLCN1) mutations in a single recessive myotonia congenita family. Neurology 1997; 48: 542–543.
- 96 Sowers JR, Zemel MB, Walsh MF, Standley PR, Zemel PC, Bronsteen RA, et al. Effects of normal pregnancy on cellular cation metabolism and peripheral vascular resistance. Am J Hypertens 1990; 3: 16–22.
- 97
Steinert H.
Myopathologische Beiträge. I. Über das klinische und anatomische Bild des Muskelschwunds der Myotoniker.
Dtsch Z Nervenhkd
1909;
37:
58–104.
10.1007/BF01671719 Google Scholar
- 98 Steinmeyer K, Ortland C, Jentsch TJ. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature 1991; 354: 301–304.
- 99 Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ. Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 1994; 13: 737–743.
- 100 Streib EW, Sun SF. EMG in detection of heterozygote carriers of recessive generalized myotonia. Muscle Nerve 1982; 5: 179–181.
- 101 Streib EW, Sun SF, Yarkowsky T. Transient paresis in myotonic syndromes: a simplified electrophysiologic approach. Muscle Nerve 1982; 5: 719–723.
- 102 Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M. Spectrum of CLCN1 mutations in patients with myotonia congenita in northern Scandinavia. Eur J Hum Genet 2001; 9: 903–909.
- 103 Taylor DJ, Kemp GJ, Woods CG, Edwards JH, Radda GK. Skeletal muscle bioenergetics in myotonic dystrophy. J Neurol Sci 1993; 116: 193–200.
- 104 Thiemann A, Gründer S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 1992; 356: 57–60.
- 105 Thomasen E. Myotonia. Thesis, University of Copenhagen. Aarhus: Universitetsforlaget i Aarhus; 1948.
- 106
Thomsen J.
Tonische Krämpfe in willkürlich beweglichen Muskeln in Folge von ererbter psychischer disposition (ataxia muscularis?).
Arch Psychiatr Nervenkr
1876;
6:
702–718.
10.1007/BF02164912 Google Scholar
- 107
Thomsen J.
Nachträgliche Bemerkungen über Myotonia congenita (Strümpell), Thomsen'sche Krankheit (Westphal).
Arch Psychiatr
1892;
24:
918.
10.1007/BF02160165 Google Scholar
- 108 van Beekvelt M, Rongen G, Drost G, Stegeman D, van Engelen B, Zwarts M. Na+K+–ATPase is not involved in the warming-up phenomenon of recessive myotonia. Muscle Nerve 2003; 28(suppl): S173.
- 109
Wagner S,
Deymeer F,
Kürz LL,
Benz S,
Schleithoff L,
Lehmann-Horn F, et al.
The dominant chloride channel mutant G200R causing fluctuating myotonia: clinical findings, electrophysiology, and channel pathology.
Muscle Nerve
1998;
21:
1122–1128.
10.1002/(SICI)1097-4598(199809)21:9<1122::AID-MUS2>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 110 Wagner A, Zett L. Ergebnisse elektromyographischer und mechanographischer Untersuchungen bei Myotonia congenita. Z EEG-EMG 1982; 12: 14–21.
- 111 Warnstedt M, Sun C, Poser B, Escriva MJ, Tranebjaerg L, Torbergsen T, et al. The myotonia congenita mutation A331T confers a novel hyperpolarization-activated gate to the muscle chloride channel ClC-1. J Neurosci 2002; 22: 7462–7470.
- 112
Weiss MD,
Mayer RF.
Temperature-sensitive repetitive discharges in paramyotonia congenita.
Muscle Nerve
1997;
20:
195–197.
10.1002/(SICI)1097-4598(199702)20:2<195::AID-MUS9>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 113 Westerblad H, Allen DG. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol (Lond) 1992; 449: 49–71.
- 114 Wollnik B, Kubisch C, Steinmeyer K, Pusch M. Identification of functionally important regions of the muscular chloride channel ClC-1 by analysis of recessive and dominant myotonic mutations. Hum Mol Genet 1997; 6: 805–811.
- 115 Wu FF, Ryan A, Devaney J, Warnstedt M, Korade-Mirnics Z, Poser B, et al. Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain 2002; 125: 2392–2407.
- 116 Yan H, Dobbie Z, Gruber SB, Markowitz S, Romans K, Giardiello FM, et al. Small changes in expression affect predisposition to tumorigenesis. Nat Genet 2002; 30: 25–26.
- 117 Yan H, Yuan W, Velculescu VE, Vogelstein B, Kinzler KW. Allelic variation in human gene expression. Science 2002; 297: 1143.
- 118 Zellweger H, Pavone L, Biondi A, Cimino V, Gullotta F, Hart M, et al. Autosomal recessive generalized myotonia. Muscle Nerve 1980; 3: 176–180.
- 119 Zhang J, George AL Jr, Griggs RC, Fouad GT, Roberts J, Kwiecinski H, et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 1996; 47: 993–998.
- 120 Zhang J, Bendahhou S, Sanguinetti MC, Ptacek LJ. Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology 2000; 54: 937–942.
- 121 Zhang J, Sanguinetti MC, Kwiecinski H, Ptacek LJ. Mechanism of inverted activation of ClC-1 channels caused by a novel myotonia congenita mutation. J Biol Chem 2000; 275: 2999–3005.
- 122 Zhang XD, Morishima S, Ando-Akatsuka Y, Takahashi N, Nabekura T, Inoue H, et al. Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro. Glia 2004; 47: 46–57.
- 123 Zhu G, Zhang Y, Xu H, Jiang C. Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line. J Neurosci Methods 1998; 81: 73–83.