Intravoxel Incoherent Motion at 7 Tesla to quantify human spinal cord perfusion: limitations and promises
Simon Lévy
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Search for more papers by this authorStanislas Rapacchi
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Search for more papers by this authorAurélien Massire
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Search for more papers by this authorMaxime Guye
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Search for more papers by this authorCorresponding Author
Virginie Callot
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Correspondence
Virginie Callot, Centre de Résonance Magnétique Biologique et Médicale (CRMBM, UMR 7339, CNRS / Aix-Marseille Université), 27 bd Jean Moulin, 13385 Marseille cedex 05, France.
Email: [email protected]
Search for more papers by this authorSimon Lévy
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Search for more papers by this authorStanislas Rapacchi
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Search for more papers by this authorAurélien Massire
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Search for more papers by this authorMaxime Guye
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
Search for more papers by this authorCorresponding Author
Virginie Callot
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
APHM, Hopital Universitaire Timone, CEMEREM, Marseille, France
iLab-Spine International Associated Laboratory, Marseille-Montreal, France-Canada
Correspondence
Virginie Callot, Centre de Résonance Magnétique Biologique et Médicale (CRMBM, UMR 7339, CNRS / Aix-Marseille Université), 27 bd Jean Moulin, 13385 Marseille cedex 05, France.
Email: [email protected]
Search for more papers by this authorAbstract
Purpose
To develop a noninvasive technique to map human spinal cord (SC) perfusion in vivo. More specifically, to implement an intravoxel incoherent motion (IVIM) protocol at ultrahigh field for the human SC and assess parameters estimation errors.
Methods
Monte-Carlo simulations were conducted to assess estimation errors of 2 standard IVIM fitting approaches (two-step versus one-step fit) over the range of IVIM values reported for the human brain and for typical SC diffusivities. Required signal-to-noise ratio (SNR) was inferred for estimation of the parameters product, fIVIMD* (microvascular fraction times pseudo-diffusion coefficient), within 10% error margins. In-vivo IVIM imaging of the SC was performed at 7T in 6 volunteers. An image processing pipeline is proposed to generate IVIM maps and register them for an atlas-based region-wise analysis.
Results
Required b = 0 SNRs for 10% error estimation on fIVIMD* with the one-step fit were 159 and 185 for diffusion-encoding perpendicular and parallel to the SC axis, respectively. Average in vivo b = 0 SNR within cord was 141 ± 79, corresponding to estimation errors of 12.7% and 14.7% according to numerical simulations. Slice- and group-averaging reduced noise in IVIM maps, highlighting the difference in perfusion between gray and white matter. Mean ± standard deviation fIVIM and D* values across subjects within gray (respectively white) matter were 16.0 ± 1.7 (15.0 ± 1.6)% and 11.4 ± 2.9 (11.5 ± 2.4) × 10−3 mm2/s.
Conclusion
Single-subject data SNR at 7T was insufficient for reliable perfusion estimation. However, atlas-averaged IVIM maps highlighted the higher microvascular fraction of gray matter compared to white matter, providing first results of healthy human SC perfusion mapping with MRI.
Supporting Information
Filename | Description |
---|---|
mrm28195-sup-0001-Supinfo.pdfPDF document, 3.1 MB |
FIGURE S1 Experimental optimization of acquisition parameters FIGURE S2 Comparison of IVIM fitting approaches for the human spinal cord: the two-step segmented approach versus the one-step approach FIGURE S3 In vivo SNR distribution within spinal cord for the cohort studied TABLE S1 Acquisition protocol |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Kolenda H, Steffens H, Gefeller O, Hagenah J, Schomburg E. Critical levels of spinal cord blood flow and duration of ischemia for the acute recovery of segmental spinal cord responses in cats. J Spinal Disord. 1997; 10: 288–295.
- 2Fehlings MG, Tetreault L, Hsieh PC, Traynelis V, Wang MY. Introduction: degenerative cervical myelopathy: diagnostic, assessment, and management strategies, surgical complications, and outcome prediction. Neurosurg Focus. 2016; 40: E1.
- 3Vilaça CDO, Orsini M, Araujo Leite MA, et al. Cervical spondylotic myelopathy: what the neurologist should know. Neurol Int. 2016; 8:6330.
- 4Martin AR, De Leener B, Cohen-Adad J, et al. Monitoring for myelopathic progression with multiparametric quantitative MRI. Toft M, ed. PLoS One. 2018; 13:e0195733. https://doi.org/10.1371/journal.pone.0195733.
- 5Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 2016; 10: 192–238.
- 6Fradet L, Arnoux PJ, Ranjeva JP, Petit Y, Callot V. Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine. 2014; 39: E262–E269.
- 7Figley CR, Stroman PW. Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med. 2007; 58: 185–189.
- 8Duhamel G, Callot V, Cozzone PJ, Kober F. Spinal cord blood flow measurement by arterial spin labeling. Magn Reson Med. 2008; 59: 846–854.
- 9Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med. 2004; 51: 353–361.
- 10Leporq B, Saint-Jalmes H, Rabrait C, et al. Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination: Optimization of Liver Motion Imaging at 3.0T. J Magn Reson Imaging. 2015; 41: 1209–1217.
- 11Wang C, Han X, Jiang W, et al. Perfusion of spinal cord in postoperative patient with cervical spondylotic myelopathy using MR DSC technique. In Proceedings of the 25th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Honolulu, HI, 2017. p. 2507.
- 12Wang C, Han X, Jiang W, et al. Spinal cord perfusion is associated with diffusion and clinical mJOA score in preoperative patients with cervical spondylotic myelopathy. In Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Paris, France, 2018. p. 5397.
- 13Ellingson BM, Woodworth DC, Leu K, Salamon N, Holly LT. Spinal cord perfusion MR imaging implicates both ischemia and hypoxia in the pathogenesis of cervical spondylosis. World Neurosurg. 2019; 128: e773–e781.
- 14Cuvinciuc V, Viallon M, Barnaure I, Vargas MI, Lovblad KO, Haller S. Dynamic contrast-enhanced MR perfusion of intradural spinal lesions. Am J Neuroradiol. 2017; 38: 192–194.
- 15Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol. 2016; 37: 1192–1198.
- 16Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015; 276: 228–232.
- 17Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia: Recommended Implementation of ASL for Clinical Applications. Magn Reson Med. 2015; 73: 102–116.
- 18Duhamel G, Callot V, Decherchi P, et al. Mouse lumbar and cervical spinal cord blood flow measurements by arterial spin labeling: sensitivity optimization and first application. Magn Reson Med. 2009; 62: 430–439.
- 19Girard OM, Callot V, Robert B, Cozzone PJ, Duhamel G. Perfusion MRI of the human cervical spinal cord using arterial spin labeling. In Proceedings of the 21st Annual Meeting of the International Society for Magnetic Resonance in Medicine, Salt Lake City, UT, 2013. p. 0349.
- 20Nair G, Hu XP. Perfusion imaging of the human cervical spinal cord. In Proceedings of the 19th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden, 2010. p. 4083.
- 21Wang YI, Moeller S, Li X, et al. Simultaneous multi-slice turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7T. Neuroimage. 2015; 113: 279–288.
- 22Massire A, Taso M, Besson P, Guye M, Ranjeva JP, Callot V. High-resolution multi-parametric quantitative magnetic resonance imaging of the human cervical spinal cord at 7T. Neuroimage. 2016; 143: 58–69.
- 23Massire A, Rasoanandrianina H, Taso M, et al. Feasibility of single-shot multi-level multi-angle diffusion tensor imaging of the human cervical spinal cord at 7T. Magn Reson Med. 2018; 80: 947–957.
- 24Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988; 168: 497–505.
- 25Wang C, Ren D, Guo Y, et al. Distribution of intravoxel incoherent motion MRI-related parameters in the brain: evidence of interhemispheric asymmetry. Clin Radiol. 2017; 72: 94.e1–94.e6.
- 26Bisdas S, Klose U. IVIM analysis of brain tumors: an investigation of the relaxation effects of CSF, blood, and tumor tissue on the estimated perfusion fraction. Magn Reson Mater Phys Biol Med. 2015; 28: 377–383.
10.1007/s10334-014-0474-z Google Scholar
- 27Bertleff M, Domsch S, Weingärtner S, et al. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR Biomed. 2017; 30:e3833.
- 28Suo S, Cao M, Zhu W, et al. Stroke assessment with intravoxel incoherent motion diffusion-weighted MRI. NMR Biomed. 2016; 29: 320–328.
- 29Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR Biomed. 2017; 30:e3780.
- 30Maximov II, Vellmer S. Isotropically weighted intravoxel incoherent motion brain imaging at 7T. Magn Reson Imaging. 2019; 57: 124–132.
- 31Milani B, Ledoux JB, Rotzinger DC, et al. Image acquisition for intravoxel incoherent motion imaging of kidneys should be triggered at the instant of maximum blood velocity: evidence obtained with simulations and in vivo experiments. Magn Reson Med. 2019; 81: 583–593.
- 32Gambarota G, Hitti E, Leporq B, Saint-Jalmes H, Beuf O. Eliminating the blood-flow confounding effect in intravoxel incoherent motion (IVIM) using the non-negative least square analysis in liver: NNLS analysis of IVIM data in liver. Magn Reson Med. 2017; 77: 310–317.
- 33Jalnefjord O, Andersson M, Montelius M, et al. Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). MAGMA. 2018; 31: 715–723.
- 34Xiang Z, Ai Z, Liang J, Li G, Zhu X, Yan X. Evaluation of regional variability and measurement reproducibility of intravoxel incoherent motion diffusion weighted imaging using a cardiac stationary phase based ECG trigger method. BioMed Res Int. 2018; 2018:4604218.
- 35Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med. 2010; 64: 1580–1585.
- 36Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med. 2016; 75: 2175–2184.
- 37Gurney-Champion OJ, Klaassen R, Froeling M, et al. Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS One. 2018; 13:e0194590.
- 38Pekar J, Moonen CT, van Zijl PC. On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med. 1992; 23: 122–129.
- 39Federau C, O’Brien K, Meuli R, Hagmann P, Maeder P. Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. J Magn Reson Imaging. 2014; 39: 624–632.
- 40Federau C, Maeder P, O’Brien K, Browaeys P, Meuli R, Hagmann P. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology. 2012; 265: 874–881.
- 41Bisdas S, Koh TS, Roder C, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology. 2013; 55: 1189–1196.
- 42Federau C, Meuli R, O’Brien K, Maeder P, Hagmann P. Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. Am J Neuroradiol. 2014; 35: 256–262.
- 43Taso M, Girard OM, Duhamel G, et al. Tract-specific and age-related variations of the spinal cord microstructure: a multi-parametric MRI study using diffusion tensor imaging (DTI) and inhomogeneous magnetization transfer (ihMT). NMR Biomed. 2016; 29: 817–832.
- 44Finkenstaedt T, Klarhoefer M, Eberhardt C, et al. The IVIM signal in the healthy cerebral gray matter: a play of spherical and non-spherical components. Neuroimage. 2017; 152: 340–347.
- 45Samson RS, Lévy S, Schneider T, et al. ZOOM or Non-ZOOM? assessing spinal cord diffusion tensor imaging protocols for multi-centre studies. PLoS One. 2016; 11:e0155557.
- 46Xu J, Shimony JS, Klawiter EC, et al. Improved in vivo diffusion tensor imaging of human cervical spinal cord. Neuroimage. 2013; 67: 64–76.
- 47Bihan DL, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med. 1992; 27: 171–178.
- 48Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. 1997; 11: 341–359.
- 49Vonken EJ, van Osch MJ, Bakker CJ, Viergever MA. Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging. 1999; 10: 109–117.
10.1002/(SICI)1522-2586(199908)10:2<109::AID-JMRI1>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 50Parkes LM, Waqar R, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med. 2004; 51: 736–743.
- 51Morelli JN, Runge VM, Feiweier T, Kirsch JE, Williams KW, Attenberger UI. Evaluation of a modified Stejskal-Tanner diffusion encoding scheme, permitting a marked reduction in TE, in diffusion-weighted imaging of stroke patients at 3 T. Invest Radiol. 2010; 45: 29–35.
- 52DiIorio G, Brown JJ, Borrello JA, Perman WH, Shu HH. Large angle spin-echo imaging. Magn Reson Imaging. 1995; 13: 39–44.
- 53Alley S, Gilbert G, Gandini Wheeler-Kingshott C, et al. Consensus acquisition protocol for quantitative MRI of the cervical spinal cord at 3T. In Proceedings of the 26th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Paris, France, 2018. p. 0799.
- 54Manjón JV, Coupé P, Concha L, Buades A, Collins DL, Robles M. Diffusion weighted image denoising using overcomplete local PCA. PLoS One. 2013; 8:e73021.
- 55Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016; 76: 1574–1581.
- 56De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage. 2017; 145: 24–43.
- 57Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003; 20: 870–888.
- 58Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med. 2005; 54: 748–754.
- 59De Leener B, Fonov VS, Collins DL, Callot V, Stikov N, Cohen-Adad J. PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage. 2018; 165: 170–179.
- 60Lévy S, Benhamou M, Naaman C, Rainville P, Callot V, Cohen-Adad J. White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage. 2015; 119: 262–271.
- 61De Leener B, Kadoury S, Cohen-Adad J. Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 2014; 98: 528–536.
- 62Perone CS, Calabrese E, Cohen-Adad J. Spinal cord gray matter segmentation using deep dilated convolutions. Sci Rep. 2018; 8: 5966.
- 63Gillilan LA. The arterial blood supply of the human spinal cord. J Comp Neurol. 1958; 110: 75–103.
- 64Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions: a review. J Neurosurg Spine. 2011; 15: 238–251.
- 65Hassler O. Blood supply to human spinal cord: a microangiographic study. Arch Neurol. 1966; 15: 302–307.
- 66Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974; 19: 716–723.
- 67Leenders KL, Perani D, Lammertsma AA, et al. Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain. 1990; 113: 27–47.
- 68Stikov N, Trzasko JD, Bernstein MA. Reproducibility and the future of MRI research. Magn Reson Med. 2019; 82: 1981–1983.
- 69Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn Reson Med. 2018; 79: 3172–3193.
- 70Kennan RP, Gao JH, Zhong J, Gore JC. A general model of microcirculatory blood flow effects in gradient sensitized MRI. Med Phys. 1994; 21: 539–545.
- 71Henkelman RM, Neil JJ, Xiang QS. A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain. Magn Reson Med. 1994; 32: 464–469.
- 72Duong TQ, Kim SG. In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magn Reson Med. 2000; 43: 393–402.
10.1002/(SICI)1522-2594(200003)43:3<393::AID-MRM11>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 73Fournet G, Li JR, Cerjanic AM, Sutton BP, Ciobanu L, Le Bihan D. A two-pool model to describe the IVIM cerebral perfusion. J Cereb Blood Flow Metab. 2017; 37: 2987–3000.
- 74Wetscherek A, Stieltjes B, Laun FB. Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med. 2015; 74: 410–419.
- 75Schneider MJ, Gaass T, Ricke J, Dinkel J, Dietrich O. Assessment of intravoxel incoherent motion MRI with an artificial capillary network: analysis of biexponential and phase-distribution models. Magn Reson Med. 2019; 82: 1373–1384.
- 76Gardner WJ. Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neurol Neurosurg Psychiatry. 1965; 28: 247–259.
- 77Federau C, Hagmann P, Maeder P, et al. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. Hendrikse J, ed. PLoS One. 2013; 8:e72856.
- 78Jalnefjord O, Montelius M, Starck G, Ljungberg M. Optimization of b-value schemes for estimation of the diffusion coefficient and the perfusion fraction with segmented intravoxel incoherent motion model fitting. Magn Reson Med. 2019; 82: 1541–1552.
- 79Neil JJ, Bretthorst GL. On the use of bayesian probability theory for analysis of exponential decay date: an example taken from intravoxel incoherent motion experiments. Magn Reson Med. 1993; 29: 642–647.
- 80Ye C, Xu D, Qin Y, et al. Estimation of intravoxel incoherent motion parameters using low b-values. PLoS One. 2019; 14:e0211911.
- 81While PT. A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI: Bayesian fitting approaches to IVIM modeling in DWI. Magn Reson Med. 2017; 78: 2373–2387.