Flow-compensated intravoxel incoherent motion diffusion imaging
Corresponding Author
Andreas Wetscherek
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Correspondence to: Andreas Wetscherek, Ph.D., Department Medical Physics in Radiology E020, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. E-mail: [email protected]Search for more papers by this authorBram Stieltjes
Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany
Search for more papers by this authorFrederik Bernd Laun
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Andreas Wetscherek
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Correspondence to: Andreas Wetscherek, Ph.D., Department Medical Physics in Radiology E020, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. E-mail: [email protected]Search for more papers by this authorBram Stieltjes
Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany
Search for more papers by this authorFrederik Bernd Laun
Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Quantitative Imaging-Based Disease Characterization, German Cancer Research Center (DKFZ), Heidelberg, Germany
Search for more papers by this authorAbstract
Purpose
The pseudo-diffusion coefficient D* in intravoxel incoherent motion (IVIM) imaging was found difficult to seize. Flow-compensated diffusion gradients were used to test the validity of the commonly assumed biexponential limit and to determine not only D*, but also characteristic timescale τ and velocity v of the incoherent motion.
Theory and Methods
Bipolar and flow-compensated diffusion gradients were inserted into a flow-compensated single-shot EPI sequence. Images were obtained from a pipe-shaped flow phantom and from healthy volunteers. To calculate the IVIM signal outside the biexponential limit, a formalism based on normalized phase distributions was developed.
Results
The flow-compensated diffusion gradients caused less signal attenuation than the bipolar ones. A signal dependence on the duration of the flow-compensated gradients was found at low b-values in the volunteer datasets. The characteristic IVIM parameters were estimated to be v = 4.60 ± 0.34 mm/s and τ = 144 ± 10 ms for liver and v = 3.91 ± 0.54 mm/s and τ = 224 ± 47 ms for pancreas.
Conclusion
Our results strongly indicate that the biexponential limit does not adequately model the diffusion signal in liver and pancreas. By using both bipolar and flow-compensated diffusion gradients of different duration, the characteristic timescale and velocity of the incoherent motion can be determined. Magn Reson Med 74:410–419, 2015. © 2014 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
mrm25410-sup-0001-suppinfo01.pdf147.2 KB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401–407.
- 2 Le Bihan D, Breton E, Lallemand D, Aubin M-L, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497–505.
- 3 Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 1992; 27: 171–178.
- 4 Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel partially coherent motion technique: characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging 2010; 31: 942–953.
- 5 Sigmund EE, Vivier P-H, Sui D, et al. Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 2012; 263: 758–769.
- 6 Delattre BMA, Viallon M, Wei H, Zhu YM, Feiweier T, Pai VM, Wen H, Croisille P. In vivo cardiac diffusion-weighted magnetic resonance imaging quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Invest Radiol 2012; 47: 662–670.
- 7 Luciani A, Vignaud A, Cavet M, Van Nhieu JT, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology 2008; 249: 891–899.
- 8 Lemke A, Laun FB, Klauß M, Re TJ, Simon D, Delorme S, Schad LR, Stieltjes B. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009; 44: 769–775.
- 9 Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011; 29: 1053–1058.
- 10 Chandarana H, Kang SK, Wong S, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 2012; 47: 688–696.
- 11 Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH, Sodickson DK, Goldberg JD, Formenti S, Moy L. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magnet Reson Med 2011; 65: 1437–1447.
- 12 Hauser T, Essig M, Jensen A, Gerigk L, Laun FB, Munter M, Simon D, Stieltjes B. Characterization and therapy monitoring of head and neck carcinomas using diffusion-imaging-based intravoxel incoherent motion parameters-preliminary results. Neuroradiology 2013; 55: 527–536.
- 13 Bäuerle T, Seyler L, Munter M, et al. Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: a comparative study with histology. Eur J Radiol 2013; 82: 444–452.
- 14 Federau C, Maeder P, O'Brien K, Browaeys P, Meuli R, Hagmann P. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 2012; 265: 874–881.
- 15 Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428–434.
- 16 Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010; 64: 1580–1585.
- 17 Federau C, Hagmann P, Maeder P, Muller M, Meuli R, Stuber M, O'Brien K. Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. PloS One 2013; 8: e72856.
- 18 Wittsack H-J, Lanzman RS, Quentin M, Kuhlemann J, Klasen J, Pentang G, Riegger C, Antoch G, Blondin D. Temporally resolved electrocardiogram-triggered diffusion-weighted imaging of the human kidney correlation between intravoxel incoherent motion parameters and renal blood flow at different time points of the cardiac cycle. Invest Radiol 2012; 47: 226–230.
- 19 Jerome NP, Orton MR, d'Arcy JA, Collins DJ, Koh D-M, Leach MO. Comparison of free-breathing with navigator-controlled acquisition regimes in abdominal diffusion-weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014; 39: 235–240.
- 20 Dyvorne HA, Galea N, Nevers T, et al. Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters-a pilot study. Radiology 2013; 266: 920–929.
- 21 Cho GY, Kim S, Jensen JH, Storey P, Sodickson DK, Sigmund EE. A versatile flow phantom for intravoxel incoherent motion MRI. Magn Reson Med 2012; 67: 1710–1720.
- 22 Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 2011; 29: 766–776.
- 23 Zhang JL, Sigmund EE, Rusinek H, Chandarana H, Storey P, Chen Q, Lee VS. Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 2012; 67: 89–97.
- 24 Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern RV, Warfield SK. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med Image Anal 2013; 17: 325–336.
- 25 Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 2014; 71: 411–420.
- 26 Grebenkov DS. NMR survey of reflected Brownian motion. Rev Mod Phys 2007; 79: 1077–1137.
- 27 Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, Glover GH. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 1998; 39: 300–308.
- 28 Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–1210.
- 29 Stanisz GJ, Li JG, Wright GA, Henkelman RM. Water dynamics in human blood via combined measurements of T2 relaxation and diffusion in the presence of gadolinium. Magn Reson Med 1998; 39: 223–233.
- 30 Li JG, Stanisz GJ, Henkelman RM. Integrated analysis of diffusion and relaxation of water in blood. Magn Reson Med 1998; 40: 79–88.
- 31 Maki JH, MacFall JR, Johnson GA. The use of gradient flow compensation to separate diffusion and microcirculatory flow in MRI. Magn Reson Med 1991; 17: 95–107.
- 32 Callaghan PT, Codd SL. Flow coherence in a bead pack observed using frequency domain modulated gradient nuclear magnetic resonance. Phys Fluids 2001; 13: 421–427.
- 33 Ahn CB, Lee SY, Nalcioglu O, Cho ZH. The effects of random directional distributed flow in nuclear magnetic resonance imaging. Med Phys 1987; 14: 43–48.
- 34 Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003; 49: 177–182.
- 35 Stepisnik J. Analysis of NMR self-diffusion measurements by a density-matrix calculation. Phys B & C 1981; 104: 350–364.
- 36 Gore JC, Xu JZ, Colvin DC, Yankeelov TE, Parsons EC, Does MD. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR Biomed 2010; 23: 745–756.
- 37 Frahm J, Merboldt KD, Hänicke W, Haase A. Stimulated echo imaging. J Magn Reson 1985; 64: 81–93.
- 38 Merboldt KD, Hänicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 1985; 64: 479–486.
- 39 Kennan RP, Gao JH, Zhong JH, Gore JC. A general model of microcirculatory blood flow effects in gradient sensitized MRI. Med Phys 1994; 21: 539–545.
- 40 Henkelman RM, Neil JJ, Xiang Q-S. A Quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain. Magnet Reson Med 1994; 32: 464–469.
- 41 Nevo U, Özarslan E, Komlosh ME, Koay CG, Sarlls JE, Basser PJ. A system and mathematical framework to model shear flow effects in biomedical DW-imaging and spectroscopy. NMR Biomed 2010; 23: 734–744.
- 42 Klinke R, Pape H-C, Kurtz A, Silbernagl S. Physiologie. 6. Auflage ed. New York: Georg Thieme Verlag; 2010. 191 p.
- 43 Kunsch K, Kunsch S. Der Mensch in Zahlen Eine Datensammlung in Tabellen mit über 20.000 Einzelwerten. 2. Auflage ed. Berlin: Spektrum Akademischer Verlag; 2000. 64 p.
- 44 Fenton BM, Zweifach BW. Micro-circulatory model relating geometrical variation to changes in pressure and flow-rate. Ann Biomed Eng 1981; 9: 303–321.
- 45 Pawlik G, Rackl A, Bing RJ. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 1981; 208: 35–58.
- 46 Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617–623.
- 47 Ozaki M, Inoue Y, Miyati T, Hata H, Mizukami S, Komi S, Matsunaga K, Woodhams R. Motion artifact reduction of diffusion-weighted MRI of the liver: use of velocity-compensated diffusion gradients combined with tetrahedral gradients. J Magn Reson Imaging 2013; 37: 172–178.
- 48 Gamper U, Boesiger P, Kozerke S. Diffusion imaging of the in vivo heart using spin echoes-considerations on bulk motion sensitivity. Magn Reson Med 2007; 57: 331–337.
- 49 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.
- 50 Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.
- 51 Emblem KE, Mouridsen K, Bjornerud A, et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 2013; 19: 1178–1183.