Center-out echo-planar spectroscopic imaging with correction of gradient-echo phase and time shifts
Correction(s) for this article
-
Erratum to Center-out echo-planar spectroscopic imaging with correction of gradient-echo phase and time Shifts (Magn Reson Med 2013;70:16–24)
- Christian Labadie,
- Stefan Hetzer,
- Jessica Schulz,
- Toralf Mildner,
- Monique Aubert-Frécon,
- Harald E. Möller,
- Volume 74Issue 5Magnetic Resonance in Medicine
- pages: 1502-1502
- First Published online: September 2, 2015
Christian Labadie
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Université Claude Bernard, Laboratoire Spectrométrie Ionique et Moléculaire, Lyon, France
University of Leipzig, Faculty of Physics and Earth Sciences, Leipzig, Germany
Search for more papers by this authorStefan Hetzer
Humboldt University, Bernstein Center for Computational Neuroscience, Berlin, Germany
Search for more papers by this authorJessica Schulz
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Search for more papers by this authorToralf Mildner
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Search for more papers by this authorMonique Aubert-Frécon
Université Claude Bernard, Laboratoire Spectrométrie Ionique et Moléculaire, Lyon, France
Search for more papers by this authorCorresponding Author
Harald E. Möller
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
University of Leipzig, Faculty of Physics and Earth Sciences, Leipzig, Germany
Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany===Search for more papers by this authorChristian Labadie
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Université Claude Bernard, Laboratoire Spectrométrie Ionique et Moléculaire, Lyon, France
University of Leipzig, Faculty of Physics and Earth Sciences, Leipzig, Germany
Search for more papers by this authorStefan Hetzer
Humboldt University, Bernstein Center for Computational Neuroscience, Berlin, Germany
Search for more papers by this authorJessica Schulz
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Search for more papers by this authorToralf Mildner
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Search for more papers by this authorMonique Aubert-Frécon
Université Claude Bernard, Laboratoire Spectrométrie Ionique et Moléculaire, Lyon, France
Search for more papers by this authorCorresponding Author
Harald E. Möller
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
University of Leipzig, Faculty of Physics and Earth Sciences, Leipzig, Germany
Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany===Search for more papers by this authorAbstract
A procedure to prevent the formation of image and spectral Nyquist ghosts in echo-planar spectroscopic imaging is introduced. It is based on a novel Cartesian center-out echo-planar spectroscopic imaging trajectory, referred to as EPSICO, and combined with a correction of the gradient-echo phase and time shifts. Processing of homogenous sets of forward and reflected echoes is no longer necessary, resulting in an optimized spectral width. The proposed center-out trajectory passively prevents the formation of Nyquist ghosts by privileging the acquisition of the center k-space line with forward echoes at the beginning of an echo-planar spectroscopic imaging dwell time and by ensuring that all k-space lines and their respective complex conjugates are acquired at equal time intervals. With the proposed procedure, concentrations of N-acetyl aspartate, creatine, choline, glutamate, and myo-inositol were reliably determined in human white matter at 3 T. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
REFERENCES
- 1 Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 1982; 79: 3523–3526.
- 2 Maudsley AA, Hilal SK, Perman WH, Simon HE. Spatially resolved high resolution spectroscopy by four-dimensional NMR. J Magn Reson 1983; 51: 147–152.
- 3 Mansfield P. Spatial mapping of the chemical shift in NMR. Magn Reson Med 1984; 1: 370–386.
- 4 Matsui S, Sekihara K, Kohno H. Spatially resolved NMR spectroscopy using phase-modulated spin-echo trains. J Magn Reson 1986; 67: 476–490.
- 5 Doyle M, Mansfield P. Chemical-shift imaging: a hybrid approach. Magn Reson Med 1987; 5: 255–261.
- 6 Guilfoyle DN, Blamire A, Chapman B, Ordidge RJ, Mansfield P. PEEP—a rapid chemical-shift imaging method. Magn Reson Med 1989; 10: 282–287.
- 7 Adalsteinsson E, Irarrazabal P, Spielman DM, Macovski A. Three-dimensional spectroscopic imaging with time-varying gradients. Magn Reson Med 1995; 33: 461–466.
- 8 Guilfoyle DN, Mansfield P. Chemical-shift imaging. Magn Reson Med 1985; 2: 479–489.
- 9 Webb P, Spielman D, Macovski A. A fast spectroscopic imaging method using a blipped phase encode gradient. Magn Reson Med 1989; 12: 306–315.
- 10 Ebel A, Schuff N. Accelerated 3D echo-planar spectroscopic imaging at 4 Tesla using modified blipped phase-encoding. Magn Reson Med 2007; 58: 1061–1066.
- 11 Posse S, Otazo R, Tsai SY, Yoshimoto AE, Lin FH. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging. Magn Reson Med 2009; 61: 541–547.
- 12 Adalsteinsson E, Irarrazabal P, Topp S, Meyer C, Macovski A, Spielman DM. Volumetric spectroscopic imaging with spiral-based k-space trajectories. Magn Reson Med 1998; 39: 889–898.
- 13 Zhu H, Rubin D, He QH. The fast spiral-SelMQC technique for in vivo MR spectroscopic imaging of polyunsaturated fatty acids in human breast tissue. Magn Reson Med 2012; 67: 8–19.
- 14 Andronesi OC, Gagoski BA, Adalsteinsson E, Sorensen AG. Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories. NMR Biomed 2012; 25: 195–209.
- 15 Kim DH, Gu M, Spielman DM. Gradient moment compensated magnetic resonance spectroscopic imaging. Magn Reson Med 2009; 61: 457–461.
- 16 Kim DH, Spielman DM. Reducing gradient imperfections for spiral magnetic resonance spectroscopic imaging. Magn Reson Med 2006; 56: 198–203.
- 17 Posse S, DeCarli C, Le Bihan D. Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 1994; 192: 733–738.
- 18 Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 1987; 508: 333–348.
- 19 Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 2000; 12: 157–163.
- 20 Suzuki Y, Takeshima H. Equal-loudness-level contours for pure tones. J Acoust Soc Am 2004; 116: 918–933.
- 21 Hetzer S, Mildner T, Möller HE. A modified EPI sequence for high-resolution imaging at ultra-short echo time. Magn Reson Med 2011; 65: 165–175.
- 22 Liu Q, Hughes DG, Allen PS. Quantitative characterization of the eddy-current fields in a 40-cm bore superconducting magnet. Magn Reson Med 1994; 1: 73–76.
- 23 Ogg RJ, Kingsley PB, Taylor JS. WET, a T1-insensitive and B1-insensitive water-suppression method for in-vivo localized 1H-NMR spectroscopy. J Magn Reson Ser B 1994; 104: 1–10.
- 24 Bodenhausen G, Freeman R, Turner DL. Suppression of artifacts in two-dimensional J spectroscopy. J Magn Reson 1977; 27: 511–514.
- 25 Hennig J. The application of phase rotation for localized in vivo proton spectroscopy with short echo times. J Magn Reson 1992; 96: 40–59.
- 26 Hedeen RA, Edelstein WA. Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 1997; 37: 7–10.
- 27 Govindaraju R, Omar R, Rajagopalan R, Norlisah R, Ng KH. Hearing loss after noise exposure. Auris Nasus Larynx 2011; 38: 519–522.
- 28 Moelker A, Maas RAJJ, Lethimonnier F, Pattynama PMT. Interventional MR imaging at 1.5 T: quantification of sound exposure. Radiology 2002; 224: 889–895.
- 29 Posse S, Dager SR, Richards TL, Yuan C, Ogg R, Artru AA, Müller-Gärtner HW, Hayes C. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI). Magn Reson Med 1997; 37: 858–865.
- 30 Provencher SW. Estimation of metabolite concentrations from localized in vivo proton spectra. Magn Reson Med 1993; 30: 672–679.
- 31 Young K, Govindaraju V, Soher BJ, Maudsley AA. Automated spectral analysis—I: formation of a priori information by spectral simulation. Magn Reson Med 1998; 40: 812–815.
- 32 Maudsley AA, Govindaraju V, Young K, Aygula ZK, Pattany PM, Soher BJ, Matson GB. Numerical simulation of PRESS localized MR spectroscopy. J Magn Reson 2005; 173: 54–63.
- 33 Cudalbu C, Cavassila S, Rabeson H, van Ormondt D, Graveron-Demilly D. Influence of measured and simulated basis sets on metabolite concentration estimates. NMR Biomed 2008; 21: 627–636.
- 34 Atieh Z, Allouche AR, Graveron-Demilly D, M Aubert-Frécon. Density functional theory (DFT) calculations of the proton nuclear magnetic resonance (NMR) spin-Hamiltonian parameters for serine. Meas Sci Technol 2011; 22: 114015.
- 35 Smith SA, Levante TO, Meier BH, Ernst RR. Computer simulations in magnetic resonance: an object oriented programming approach. J Magn Reson A 1994; 106: 75–105.
- 36 Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129–153.
- 37 Van Vaals JJ, Bergman AH. Optimization of eddy-current compensation. J Magn Reson 1990; 90: 52–70.
- 38 Jehenson P, Westphal M, Schuff N. Analytical method for the compensation of eddy-current effects induced by pulsed magnetic field gradients in NMR systems. J Magn Reson 1990; 90: 264–278.
- 39 Matsui S, Sekihara K, Kohno H. High-speed spatially resolved NMR spectroscopy using phase-modulated spin-echo trains: expansion of the spectral bandwidth by combined use of delayed spin-echo trains. J Magn Reson 1985; 64: 167–171.
- 40 Behar KL, Rothman DL, Spencer DD, Petroff OAC. Analysis of macromolecule resonances in 1H-NMR spectra of human brain. Magn Reson Med 1994; 32: 294–302.
- 41 Labadie C, Hetzer S, Mildner T, Aubert-Frécon M, Möller HE. Phase-cycled segmented center-out echo planar spectroscopic imaging sequence. In Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Canada. 638: 2011. p 3453.
- 42 Cunningham CH, Vigneron DB, Chen AP, Xu D, Nelson SJ, Hurd RE, Kelley DA, Pauly JM. Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging. Magn Reson Med 2005; 54: 1286–1289.
- 43 Sersa I, Macura S. Spectral resolution enhancement by chemical shift imaging. Magn Reson Imaging 2007; 25: 250–258.
- 44 Labadie C, Hetzer S, Mildner T, Amariei DR, Aubert-Frécon M, Möller HE. Double-shot center-out echo planar spectroscopic imaging at 3 Tesla. In Proceedings of the 18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. p 3384.
- 45 MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Madler B. Insights into brain microstructure from the T-2 distribution. Magn Reson Imaging 2006; 24: 515–525.
- 46 Kreis R, Slotboom J, Hofmann L, Boesch C. Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magn Reson Med 2005; 54: 761–768.
- 47 McJury M, Shellock FG. Auditory noise associated with MR procedures: a review. J Magn Reson Imaging 2000; 12: 37–45.
- 48 Lauer AM, El-Sharkawy AMM, Kraitchman DL, Edelstein WA. MRI acoustic noise can harm experimental and companion animals. J Magn Reson Imaging 2012; 36: 743–747.