Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET
Eric Poulin
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorRéjean Lebel
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorEtienne Croteau
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorMarie Blanchette
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorLuc Tremblay
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorRoger Lecomte
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorM'hamed Bentourkia
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorCorresponding Author
Martin Lepage
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada===Search for more papers by this authorEric Poulin
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorRéjean Lebel
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorEtienne Croteau
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorMarie Blanchette
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorLuc Tremblay
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorRoger Lecomte
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorM'hamed Bentourkia
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Search for more papers by this authorCorresponding Author
Martin Lepage
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001 12 e Avenue Nord, Sherbrooke, Quebec, Canada
Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada===Search for more papers by this authorAbstract
Reaching the full potential of magnetic resonance imaging (MRI)-positron emission tomography (PET) dual modality systems requires new methodologies in quantitative image analyses. In this study, methods are proposed to convert an arterial input function (AIF) derived from gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) in MRI, into a 18F-fluorodeoxyglucose (18F-FDG) AIF in PET, and vice versa. The AIFs from both modalities were obtained from manual blood sampling in a F98-Fisher glioblastoma rat model. They were well fitted by a convolution of a rectangular function with a biexponential clearance function. The parameters of the biexponential AIF model were found statistically different between MRI and PET. Pharmacokinetic MRI parameters such as the volume transfer constant (Ktrans), the extravascular–extracellular volume fraction (νe), and the blood volume fraction (νp) calculated with the Gd-DTPA AIF and the Gd-DTPA AIF converted from 18F-FDG AIF normalized with or without blood sample were not statistically different. Similarly, the tumor metabolic rates of glucose (TMRGlc) calculated with 18F-FDG AIF and with 18F-FDG AIF obtained from Gd-DTPA AIF were also found not statistically different. In conclusion, only one accurate AIF would be needed for dual MRI-PET pharmacokinetic modeling in small animal models. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.
REFERENCES
- 1 Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol 2006; 24: 3282–3292.
- 2 Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, Meszoely I, Mayer IA, Herman CR, McManus K, Price RR, Gore JC. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 2007; 25: 1–13.
- 3 Haris M, Gupta RK, Singh A, Husain N, Husain M, Pandey CM, Srivastava C, Behari S, Rathore RKS. Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 2008; 50: 531–540.
- 4 Awasthi R, Rathore RK, Soni P, Sahoo P, Awasthi A, Husain N, Behari S, Singh RK, Pandey CM, Gupta RK. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 2011, in press.
- 5 Kimura N, Yamamoto Y, Kameyama R, Hatakeyama T, Kawai N, Nishiyama Y. Diagnostic value of kinetic analysis using dynamic 18F-FDG-PET in patients with malignant primary brain tumor. Nucl Med Commun 2009; 30: 602–609.
- 6 Jacobs AH, Kracht LW, Gossmann A, Rüger MA, Thomas AV, Thiel A, Herholz K. Imaging in neurooncology. NeuroRx 2005; 2: 333–347.
- 7 Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001; 96: 191–197.
- 8 Raylman RR, Majewski S, Lemieux S, Velana SS, Kross B, Popov V, Smith MF, Weisenberger AG, Wojcik R. Initial tests of a prototype MRI-compatible PET imager. Nucl Instrum Meth Phys Res A 2006; 569: 306–309.
- 9 Maramraju SH, Smith SD, Junnarkar SS, Schulz D, Stoll S, Ravindranath B, Purschke ML, Rescia S, Southekal S, Pratte JF, Vaska P, Woody CL, Schlyer DJ. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 2011; 56: 2459–2480.
- 10 Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, Siegel SB, Claussen CD, Cherry SR. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47: 639–647.
- 11 Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, Hong IK, Kim YB. A hybrid PET-MRI: an integrated molecular-genetic imaging system with HRRT-PET and 7.0-T MRI. Int J Imaging Syst Technol 2007; 17: 252–265.
- 12 Seemann MD. Whole-body PET/MRI: the future in oncological imaging. Technol Cancer Res Treat 2005; 4: 577–582.
- 13 de Kemp RA, Epstein FH, Catana C, Tsui BM, Ritman EL. Small-animal molecular imaging methods. J Nucl Med 2010; 51( Suppl 1): 18S–32S.
- 14 Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 2009; 36( Suppl 1): S105–112.
- 15 Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51: 333–336.
- 16 von Schulthess GK, Schlemmer HP. A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 2009; 36( Suppl. 1): S3–9.
- 17 Townsend DW. Dual-modality imaging: combining anatomy and function. J Nucl Med 2008; 49: 938–955.
- 18 Semple SI, Gilbert FJ, Redpath TW, Staff RT, Ahearn TS, Welch AE, Heys SD, Hutcheon AW, Smyth EH, Chaturvedi S. The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 2004; 14: 2038–2045.
- 19 Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, Price RR, Gore JC. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 2005; 23: 519–529.
- 20 Laforest R, Sharp TL, Engelbach JA, Fettig NM, Herrero P, Kim J, Lewis JS, Rowland DJ, Tai YC, Welch MJ. Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 2005; 32: 679–685.
- 21 Herholz K, Rudolf J, Heiss WD. FDG transport and phosphorylation in human gliomas measured with dynamic PET. J Neurooncol 1992; 12: 159–165.
- 22 Brock CS, Young H, O'Reilly SM, Matthews J, Osman S, Evans H, Newlands ES, Price PM. Early evaluation of tumour metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 2000; 82: 608–615.
- 23 Spence AM, Muzi M, Graham MM, O'Sullivan F, Krohn KA, Link JM, Lewellen TK, Lewellen B, Freeman SD, Berger MS, Ojemann GA. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med 1998; 39: 440–448.
- 24 Eby PR, Partridge SC, White SW, Doot RK, Dunnwald LK, Schubert EK, Kurland BF, Lehman CD, Mankoff DA. Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 2008; 15: 1246–1254.
- 25 Cheng HL. Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 2008; 28: 736–743.
- 26 Pellerin M, Yankeelov TE, Lepage M. Incorporating contrast agent diffusion into the analysis of DCE-MRI data. Magn Reson Med 2007; 58: 1124–1134.
- 27 Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1–7.
- 28 Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371–388.
- 29 Mathieu D, Lecomte R, Tsanaclis AM, Larouche A, Fortin D. Standardization and detailed characterization of the syngeneic fischer/F98 glioma model. Can J Neurol Sci 2007; 34: 296–306.
- 30 Croteau E, Poulin E, Tremblay S, Perreault VD, Gascon S, Benard F, Lepage M, Lecomte R. A non-invasive arterial blood sampling method to obtain input function in rat. J Nucl Med 2011; 52( Suppl. 1): 2084.
- 31
Tofts PS,
Brix G,
Buckley DL,
Evelhoch JL,
Henderson E,
Knopp MV,
Larsson HB,
Lee TY,
Mayr NA,
Parker GJ,
Port RE,
Taylor J,
Weisskoff RM.
Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols.
J Magn Reson Imaging
1999;
10:
223–232.
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 32 Kapoor R, Spence AM, Muzi M, Graham MM, Abbott GL, Krohn KA. Determination of the deoxyglucose and glucose phosphorylation ratio and the lumped constant in rat brain and a transplantable rat glioma. J Neurochem 1989; 53: 37–44.
- 33 Artemov D. Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 2003; 90: 518–524.
- 34 Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 2006; 56: 993–1000.
- 35 Horsfield MA, Thornton JS, Gill A, Jager HR, Priest AN, Morgan B. A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 2009; 54: 2933–2949.
- 36 McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJ. Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med 2009; 61: 1173–1184.
- 37 Phillips RL, Chen CY, Wong DF, London ED. An improved method to calculate cerebral metabolic rates of glucose using PET. J Nucl Med 1995; 36: 1668–1679.
- 38 Yankeelov TE, Cron GO, Addison CL, Wallace JC, Wilkins RC, Pappas BA, Santyr GE, Gore JC. Comparison of a reference region model with direct measurement of an AIF in the analysis of DCE-MRI data. Magn Reson Med 2007; 57: 353–361.
- 39 Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, Price RR, Gore JC. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 2005; 23: 519–529.
- 40 Yang C, Karczmar GS, Medved M, Stadler WM. Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 2004; 52: 1110–1117.
- 41 Yankeelov TE, DeBusk LM, Billheimer DD, Luci JJ, Lin PC, Price RR, Gore JC. Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T. J Magn Reson Imaging 2006; 24: 1140–1147.
- 42 Santra A, Kumar R, Sharma P, Bal C, Kumar A, Julka PK, Malhotra A. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol. 2012; 81: 508–513.
- 43 Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med 1985; 25: 72–76.
- 44 Beaumont M, Lemasson B, Farion R, Segebarth C, Remy C, Barbier EL. Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrast-enhanced MRI. J Cereb Blood Flow Metab 2009; 29: 1714–1726.
- 45 Doblas S, He T, Saunders D, Pearson J, Hoyle J, Smith N, Lerner M, Towner RA. Glioma morphology and tumor-induced vascular alterations revealed in seven rodent glioma models by in vivo magnetic resonance imaging and angiography. J Magn Reson Imaging 2010; 32: 267–275.