Highly localized positive contrast of small paramagnetic objects using 3D center-out radial sampling with off-resonance reception
Corresponding Author
Peter R. Seevinck
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Q.S.459 P.O Box 85500, 3508 GA Utrecht, The Netherlands===Search for more papers by this authorHendrik de Leeuw
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorChris J. G. Bakker
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorCorresponding Author
Peter R. Seevinck
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Q.S.459 P.O Box 85500, 3508 GA Utrecht, The Netherlands===Search for more papers by this authorHendrik de Leeuw
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorChris J. G. Bakker
Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorAbstract
In this article, we present a 3D imaging technique, applying center-out RAdial Sampling with Off-Resonance reception, to accurately depict and localize small paramagnetic objects with high positive contrast while suppressing long T2* components. The center-out RAdial Sampling with Off-Resonance reception imaging technique is a fully frequency-encoded 3D ultrashort echo time acquisition method, which uses a large excitation bandwidth and off-resonance reception. By manually introducing an offset, Δf0, to the central reception frequency (f0), the typical radial signal pileup observed in 3D center-out sampling caused by a dipolar magnetic field disturbance can be shifted toward the source of the field disturbance, resulting in a hyperintense signal at the magnetic center of the small paramagnetic object. This was demonstrated both theoretically and using 1D time domain simulations. Experimental verification was done in a gel phantom and in inhomogeneous porcine tissue containing various objects with very different geometry and susceptibility, namely, subvoxel stainless steel spheres, a puncture needle, and paramagnetic brachytherapy seeds. In all cases, center-out RAdial Sampling with Off-Resonance reception was shown to generate high positive contrast exactly at the location of the paramagnetic object, as was confirmed by X-ray computed tomography. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc.
REFERENCES
- 1 van der Weide R, Bakker CJ, Viergever MA. Localization of intravascular devices with paramagnetic markers in MR images. IEEE Trans Med Imaging 2001; 20: 1061–1071.
- 2 Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 2003; 50: 784–790.
- 3 Huisman HJ, Futterer JJ, van Lin EN, Welmers A, Scheenen TW, van Dalen JA, Visser AG, Witjes JA, Barentsz JO. Prostate cancer: precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers. Radiology 2005; 236: 311– 317.
- 4 Lauer UA, Graf H, Berger A, Claussen CD, Schick F. Radio frequency versus susceptibility effects of small conductive implants—a systematic MRI study on aneurysm clips at 1.5 and 3 T. Magn Reson Imaging 2005; 23: 563–569.
- 5 Shellock FG, Gounis M, Wakhloo A. Detachable coil for cerebral aneurysms: in vitro evaluation of magnetic field interactions, heating, and artifacts at 3T. AJNR Am J Neuroradiol 2005; 26: 363–366.
- 6 Teitelbaum GP, Bradley WG Jr, Klein BD. MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents, and coils. Radiology 1988; 166: 657–664.
- 7 Bartels LW, Smits HF, Bakker CJ, Viergever MA. MR imaging of vascular stents: effects of susceptibility, flow, and radiofrequency eddy currents. J Vasc Interv Radiol 2001; 12: 365–371.
- 8 Vonken EJ, Schar M, Stuber M. Positive contrast visualization of nitinol devices using susceptibility gradient mapping. Magn Reson Med 2008; 60: 588–594.
- 9 Lagerburg V, Moerland MA, Seppenwoolde JH, Lagendijk JJ. Simulation of the artefact of an iodine seed placed at the needle tip in MRI-guided prostate brachytherapy. Phys Med Biol 2008; 53: N59–N67.
- 10 Miquel ME, Rhode KS, Acher PL, Macdougall ND, Blackall J, Gaston RP, Hegde S, Morris SL, Beaney R, Deehan C, Popert R, Keevil SF. Using combined X-ray and MR imaging for prostate I-125 post-implant dosimetry: phantom validation and preliminary patient work. Phys Med Biol 2006; 51: 1129–1137.
- 11 Moerland MA, Wijrdeman HK, Beersma R, Bakker CJ, Battermann JJ. Evaluation of permanent I-125 prostate implants using radiography and magnetic resonance imaging. Int J Radiat Oncol Biol Phys 1997; 37: 927–933.
- 12
Butts K, Pauly JM, Daniel BL, Kee S, Norbash AM.
Management of biopsy needle artifacts: techniques for RF-refocused MRI.
J Magn Reson Imaging
1999;
9:
586–595.
10.1002/(SICI)1522-2586(199904)9:4<586::AID-JMRI13>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 13 Sinha S, Sinha U, Lufkin R, Hanafee W. Pulse sequence optimization for use with a biopsy needle in MRI. Magn Reson Imaging 1989; 7: 575–579.
- 14 Glowinski A, Adam G, Bucker A, van VJ, Gunther RW. A perspective on needle artifacts in MRI: an electromagnetic model for experimentally separating susceptibility effects. IEEE Trans Med Imaging 2000; 19: 1248–1252.
- 15 Muller-Bierl B, Graf H, Lauer U, Steidle G, Schick F. Numerical modeling of needle tip artifacts in MR gradient echo imaging. Med Phys 2004; 31: 579–587.
- 16 Ludeke KM, Roschmann P, Tischler R. Susceptibility artefacts in NMR imaging. Magn Reson Imaging 1985; 3: 329–343.
- 17 Reichenbach JR, Venkatesan R, Yablonskiy DA, Thompson MR, Lai S, Haacke EM. Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 1997; 7: 266–279.
- 18 Bos C, Viergever MA, Bakker CJ. On the artifact of a subvoxel susceptibility deviation in spoiled gradient-echo imaging. Magn Reson Med 2003; 50: 400–404.
- 19 Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 2006; 55: 126–135.
- 20 Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 2005; 53: 999–1005.
- 21 Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 2007; 58: 1072–1077.
- 22 Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T. Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 2008; 60: 595–603.
- 23 Liu W, Dahnke H, Jordan EK, Schaeffter T, Frank JA. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed 2008; 21: 242–250.
- 24 Rahmer J, Blume U, Bornert P. Selective 3D ultrashort TE imaging: comparison of "dual-echo" acquisition and magnetization preparation for improving short-T 2 contrast. MAGMA 2007; 20: 83–92.
- 25 Seevinck PR, Bos C, Bakker CJ. High positive contrast generation of a subvoxel susceptibility deviation using ultrashort TE (UTE) radial center-out imaging at 3T. In: Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, USA, 2009.
- 26 Gatehouse PD, Bydder GM. Magnetic resonance imaging of short T2 components in tissue. Clin Radiol 2003; 58: 1–19.
- 27 Lai CM, Lauterbur PC. True three-dimensional image reconstruction by nuclear magnetic resonance zeugmatography. Phys Med Biol 1981; 26: 851–856.
- 28 Bakker CJ, Seppenwoolde JH, Vincken KL. Dephased MRI. Magn Reson Med 2006; 55: 92–97.
- 29 Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging. Physical principles and sequence design. New York: Wiley; 1999.
- 30 Lauzon ML, Rutt BK. Effects of polar sampling in k-space. Magn Reson Med 1996; 36: 940–949.
- 31
Nayak KS, Nishimura DG.
Automatic field map generation and off-resonance correction for projection reconstruction imaging.
Magn Reson Med
2000;
43:
151–154.
10.1002/(SICI)1522-2594(200001)43:1<151::AID-MRM19>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 32 Karaiskos P, Papagiannis P, Sakelliou L, Anagnostopoulos G, Baltas D. Monte Carlo dosimetry of the selectSeed 125I interstitial brachytherapy seed. Med Phys 2001; 28: 1753–1760.
- 33 Acher P, Rhode K, Morris S, Gaya A, Miquel M, Popert R, Tham I, Nichol J, McLeish K, Deehan C, Dasgupta P, Beaney R, Keevil SF. Comparison of combined x-ray radiography and magnetic resonance (XMR) imaging-versus computed tomography-based dosimetry for the evaluation of permanent prostate brachytherapy implants. Int J Radiat Oncol Biol Phys 2008; 71: 1518–1525.
- 34 Orio PF III, Tutar IB, Narayanan S, Arthurs S, Cho PS, Kim Y, Merrick G, Wallner KE. Intraoperative ultrasound-fluoroscopy fusion can enhance prostate brachytherapy quality. Int J Radiat Oncol Biol Phys 2007; 69: 302–307.
- 35 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61: 381–390.
- 36 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med 2009; 62: 66–76.
- 37 Clasen S, Pereira PL. Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging 2008; 27: 421–433.
- 38 Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med 2008; 60: 135–145.
- 39 Cukur T, Yamada M, Overall WR, Yang P, Nishimura DG. Positive contrast with alternating repetition time SSFP (PARTS): a fast imaging technique for SPIO-labeled cells. Magn Reson Med 2010; 63: 427–437.