Time-resolved contrast-enhanced 3D MR angiography
Corresponding Author
Frank R. Korosec Ph.D
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
UW Hospital and Clinics, Department of Radiology, E3/311, 600 Highland Avenue, Madison, WI 53792–3252===Search for more papers by this authorRichard Frayne
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorThomas M. Grist
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorCharles A. Mistretta
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorCorresponding Author
Frank R. Korosec Ph.D
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
UW Hospital and Clinics, Department of Radiology, E3/311, 600 Highland Avenue, Madison, WI 53792–3252===Search for more papers by this authorRichard Frayne
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorThomas M. Grist
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorCharles A. Mistretta
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
Search for more papers by this authorAbstract
An MR angiographic technique, referred to as 3D TRICKS (3D time-resolved imaging of contrast kinetics) has been developed. This technique combines and extends to 3D imaging several previously published elements. These elements include an increased sampling rate for lower spatial frequencies, temporal interpolation of k-space views, and zero-filling in the slice-encoding dimension. When appropriately combined, these elements permit reconstruction of a series of 3D image sets having an effective temporal frame rate of one volume every 2-6 s. Acquiring a temporal series of images offers advantages over the current contrast-enhanced 3D MRA techniques in that it i) increases the likelihood that an arterial-only 3D image set will be obtained, ii) permits the passage of the contrast agent to be observed, and iii) allows temporal-processing techniques to be applied to yield additional information, or improve image quality.
References
- 1 S. V. Lossef, S. S. Rajan, R. H. Patt, M. Carvlin, D. Calcagno, M. N. Gomes, K. H. Barth, Gadolinium-enhanced magnitude contrast MR angiography of popliteal and tibial arteries. Radiology 184, 349–355 (1992).
- 2 V. M. Runge, J. E. Kirsch, C. Lee, Contrast-enhanced MR angiography. J. Magn. Reson. Imaging 3, 233–239 (1993).
- 3 M. R. Prince, E. K. Yucel, J. A. Kaufman, D. C. Harrison, S. C. Geller, Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J. Magn. Reson. Imaging 3, 877–881 (1993).
- 4 W. Lin, E. M. Haacke, A. S. Smith, M. E. Clampitt, Gadolinium-enhanced high resolution MR angiography with adaptive vessel tracking: preliminary results in the intracranial circulation. J. Magn. Reson. Imaging 2, 277–284 (1992).
- 5 G. Sze, S. N. Goldberg, Y. Kawamura, Comparison of bolus and constant infusion methods of gadolinium administration in MR angiography. AJNR 15, 909–912 (1994).
- 6 G. A. Holland, L. Dougherty, B. L. Greenman, R. A. Baum, J. P. Carpenter, M. D. Schnall, M. Gilfeather, L. Axel, Ultrafast 3D time-of-flight MR angiography with gadolinium of the abdominal aorta and the visceral vessels performed in a breath-hold: preliminary experience, in “Proc., SMR, Third Annual Meeting, 1995,” p. 77.
- 7 D. Revel, P. Loubeyre, A. Delignette, P. Douek, M. Amiel, Contrast-enhanced magnetic resonance tomoangiography: a new imaging technique for studying thoracic great vessels. Magn. Reson. Imaging 11, 1101–1105 (1993).
- 8 P. C. Douek, D. Revel, S. Chazel, B. Falise, J. Villard, M. Amiel, Fast MR angiography of the aotoiliac arteries and arteries of the lower extremity: value of bolus-enhanced, whole-volume subtraction technique. AJR 165, 431–437 (1995).
- 9 P. M. Rodgers, J. Ward, C. J. Baudouin, J. P. Ridgway, P. J. Robinson, Dynamic contrast-enhanced imaging of the portal venous system: comparison with x-ray angiography. Radiology 191, 741–745 (1994).
- 10 M. R. Prince, Gadolinium-enhanced MR aortography. Radiology 191, 155–164 (1994).
- 11 J. S. Swan, T. M. Grist, F. R. Korosec, T. W. Kennell, J. R. Hoch, D. M. Heisey, MR angiography of the pelvis with breath-held gadolinium-enhanced 3D TOF using k-space zero-filling and a contrast timing scan, in “Proc., SMR, Fourth Annual Meeting, 1996,” p. 744.
- 12 R. R. Edelman, H. P. Mattle, D. J. Atkinson, H. M. Hoogewoud, MR angiography. AJR 154, 937–946 (1990).
- 13 Y. Wang, D. M. Weber, F. R. Korosec, C. A. Mistretta, T. M. Grist, J. S. Swan, P. A. Turski, Generalized matched filtering for time-resolved MR angiography of pulsatile flow. Magn. Reson. Med. 30, 600–608 (1993).
- 14 A. M. Haggar, J. P. Windham, D. A. Reimann, D. O. Hearshen, J. W. Froelich, Eigenimage filtering in MR imaging: an application in the abnormal chest wall. Magn. Reson. Med. 11, 85–97 (1989).
- 15 J. J. van Vaals, M. E. Brummer, W. T. Dixon, H. H. Tuithof, H. Engels, R. C. Nelson, B. M. Gerety, J. L. Chezmar, J. A. den Boer, “Keyhole” method for accelerating imaging of contrast agent uptake. J. Magn. Reson. Imaging 3, 671–675 (1993).
- 16 M. Doyle, E. G. Walsh, G. G. Blackwell, G. M. Pohost, Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn. Reson. Med. 33, 163–170 (1995).
- 17 S. J. Riederer, T. Tasciyan, F. Farzaneh, J. N. Lee, R. C. Wright, R. J. Herfkens, MR fluoroscopy: technical feasibility. Magn. Reson. Med. 8, 1–15 (1988).
- 18 A. B. Kerr, J. M. Pauly, C. H. Meyer, D. G. Nishimura, New strategies in spiral MR fluoroscopy, in “Proc., SMR, Third Annual Meeting, 1995,” p. 99.
- 19 D. M. Spielman, J. M. Pauly, C. H. Meyer, Magnetic resonance fluoroscopy using spirals with variable sampling densities. Magn. Reson. Med. 34, 388–394 (1995).
- 20 N. J. Pelc, R. J. Herfkens, A. Shimakawa, D. R. Enzmann, Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 7, 229–254 (1991).
- 21 Y. P. Du, D. L. Parker, W. L. Davis, G. Cao, Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J. Magn. Reson. Imaging 4, 733–741 (1994).
- 22 J. A. Polzin, R. Frayne, T. M. Grist, C. A. Mistretta, Phase-contrast flow measurements with variable rate k-space sampling, in “Proc., SMR, Third Annual Meeting, 1995,” p. 593.
- 23 F. R. Korosec, D. M. Weber, C. A. Mistretta, P. A. Turski, M. A. Bernstein, A data adaptive reprojection technique for MR angiography. Magn. Reson. Med. 24, 262–274 (1992).
- 24 S. N. Urchuck, D. B. Plewes, Mechanisms of flow-induced signal loss in MR angiography. J. Magn. Reson. Imaging 2, 453–462 (1992).
- 25 W. A. Kalender, W. Seissler, E. Klotz, P. Vock, Spiral volumetric CT with single-breath-hold technique, continuos transport, and continuous scanner rotation. Radiology 176, 181–183 (1990).
- 26 G. D. Rubin, M. D. Dake, C. P. Semba, Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol. Clin. North Am. 33, 51–70 (1995).
- 27 G. D. Rubin, M. D. Dake, S. A. Napel, C. H. McDonell, R. B. Jeffery, Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. Radiology 186, 147–152 (1993).
- 28 L. van Hoe, G. Marchal, A. L. Baert, S. Gryspeerdt, L. Mertens, Determination of scan delay time in spiral CT-angiography: utility of a test bolus injection. J. Comput. Assist. Tomogr. 19, 216–220 (1995).
- 29 S. Napel, M. P. Marks, G. D. Rubin, M. D. Dake, C. H. McDonnell, S. M. Song, D. R. Enzmann, R. B. Jeffery Jr., CT angiography with spiral CT and maximum intensity projection. Radiology 185, 607–610 (1992).
- 30 J. O. Fredrickson, N. J. Pelc, Temporal resolution improvement in dynamic imaging, in “Proc., SMR, Third Annual Meeting, 1995,” p. 197.
- 31 C. A. Mistretta, T. M. Grist, R. Frayne, F. R. Korosec, J. A. Polzin, Simulation of a breath-hold method for time-resolved 3D contrast imaging, in “Proc., SMR, Fourth Annual Meeting, 1996,” p. 1498.