Improved visualization of breast lesions with gadolinium-enhanced magnetization transfer MR imaging
Corresponding Author
Wolfgang G. Schreiber Ph.D.
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany===Search for more papers by this authorGunnar Brix
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorMichael V. Knopp
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorThomas Heß
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorWalter J. Lorenz
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Wolfgang G. Schreiber Ph.D.
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany===Search for more papers by this authorGunnar Brix
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorMichael V. Knopp
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorThomas Heß
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorWalter J. Lorenz
Department of Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany
Search for more papers by this authorAbstract
A pulse sequence with magnetization transfer as the main contrast mechanism (MT-FLASH) was developed for improved imaging of breast lesions that requires neither fat suppression nor postprocessing. After optimization of the sequence in phantom and volunteer studies, a clinical pilot study with 14 patients was performed. In carcinomas the relative signal increase after Gd-DTPA administration was on average 34% in MT-FLASH images compared with 169% in conventional T1 weighted (T1W) three-dimensional FLASH images. In MT-FLASH images, all lesions demonstrated a signal intensity higher than that of fat; in T1W images, all lesions have a lower signal intensity. The average postcontrast carcinoma-to-fat contrast-to-noise ratios were +11.6 and −14.2, respectively. The conspicutty of 12 of 13 carcinomas was improved in postcontrast MT-FLASH images compared with postcontrast T1w images. Thus, MT-FLASH imaging enables excellent visualization of Gd-DTPA-enhancing breast lesions.
References
- 1 W. A. Kaiser, E. Zeitler, MR imaging of the breast: Fast imaging sequences with and without Gd-DTPA, Radiology 170, 681–686 (1989).
- 2 S. H. Heywang, A. Wolf, E. Pruss, T. Hilbertz, W. Eiermann, W. Permanetter, MR imaging of the breast with Gd-DTPA: Use and limitations. Radiology 171, 95–103 (1989).
- 3 J. P. Stack, O. M. Redmont, M. B. Codd, P. A. Dervan, J. T. Ennis, Breast disease: Tissue characterization with Gd-DTPA enhancement profiles, Radiology 174, 491–494 (1990).
- 4 W. H. Perman, E. M. Heiberg, J. Grunz, V. M. Hermann, C. G. Janney, A fast 3D-imaging technique for performing dynamic Gd-enhanced MRI of breast lesions, Magn. Reson. Med. 12 (4), 545–551 (1994).
- 5 S. H. Heywang-Köbrunner, J. Haustein, C. Pohl, R. Beck, B. Lommatzsch, M. Untch, W. B. J. Nathrath, Contrast-enhanced MR imaging of the breast: Comparison of two different doses of gadopentetate dimeglumine, Radiology 191, 639–646 (1994).
- 6 S. E. Harms, D. P. Flamig, K. L. Hesley, M. D. Meiches, R. A. Jensen, W. P. Evans, D. A. Savino, R. V. Wells, MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation, Radiohgy 187, 493–501 (1993).
- 7 S. Greenstein Orel, M. D. Schnall, V. A. LiVolsi, R. H. Troupin, Suspicious breast lesions: MR imaging with radio-logic-pathologic correlation, Radiology 190, 485–493 (1994).
- 8 T. E. Merchant, G. R. P. Thelissen, H. C. E. Kievit, L. J. M. P. Oosterwaal, C. J. G. Bakker, P. W. De Graaf, Breast disease evaluation with fat-suppressed magnetic resonance imaging, Magn. Reson. Imaging 10, 335–340 (1992).
- 9 R. Gilles, J.-M. Guinebretiere, C. Toussaint, M. Spielman, M. Rietjens, J.-Y. Petit, G. Contesso, J. Masselot, D. Vanel, Locally advanced breast cancer: Contrast-enhanced subtraction MR imaging of response to preoperative chemotherapy. Radiology 191, 633–638 (1994).
- 10 C. Boetes, J. O. Barentsz, R. D. Mus, R. F. Van der Sluis L. J. T. O. Van Erning, J. H. L. Hendriks, R. Holland, S. H. J. Ruys, MR characterization of suspicious breast lesions with a gadolinium-enhanced TurboFLASH subtraction technique. Radiology 193, 777–781 (1994).
- 11 M. D. Schnall, S. Orel, M. Torosian, I. Yeh, R. Troupin, H. Y. Kressel, High resolution MR imaging of breast lesions in vivo, in “Proc., SMRM, 11th Annual Meeting, Berlin, 1992,” p. 752.
- 12 W. B. Pierce, S. E. Harms, D. P. Flamig, R. H. Griffey, W. P. Evans, J. E. Hagans, Three-dimensional gadolinium-enhanced MR imaging of the breast: Pulse sequence with fat suppression and magnetization transfer contrast. Radiology 181, 757–763 (1991).
- 13 D. P. Flamig, W. B. Pierce, S. E. Harms, R. H. Griffey, Magnetization transfer contrast in fat-suppressed steady-state three-dimensional MR images. Magn. Reson. Med. 26, 122–131 (1992).
- 14 W. Schreiber, G. Brix, M. Deimling, W. Lorenz, Magnetization transfer experiments at a whole body imager using short frequency selective saturation pulses, in “Proc, SMRM, 11th Annual Meeting, Berlin 1992,” p. 1327.
- 15 A. P. Crawley, M. L. Wood, R. M. Henkelman, Elimination of transverse coherences in FLASH MRI. Magn. Reson. Med. 8, 248–260 (1988).
- 16 J. Eng, T. L. Ceckler, R. S. Balaban, Quantitative 1H magnetization transfer imaging in vivo. Magn. Reson. Med. 17, 304–314 (1991).
- 17 S. D. Wolff, R. S. Balaban, Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn. Reson. Med. 10, 135–144 (1989).
- 18 D. M. Doddrell, J. M. Bulsing, G. J. Galloway, W. M. Brooks, J. Field, M. Irving, H. Baddeley, Discrete isolation from gradient-governed elimination of resonances. DIGGER, a new technique for in vivo volume-selected NMR spectroscopy. J. Magn. Reson. 70, 319–326 (1986).
- 19 T. A. Fralix, T. L. Ceckler, S. D. Wolff, S. A. Simon, R. S. Balaban, Lipid bilayer and water proton magnetization transfer: Effect of cholesterol. Magn. Reson. Med. 18, 214–223 (1991).
- 20 T. D. Scholz, T. L. Ceckler, R. S. Balaban, Magnetization transfer characterization of hypertensive cardiomyopathy: Significance of tissue water content. Magn. Reson. Med. 29, 352–357 (1993).
- 21 V. Yip, R. S. Balaban, The effects of magnetic resonance contrast agents on magnetization transfer contrast, in “Proc, SMRM, 11th Annual Meeting, Berlin, 1992,” p. 1412.
- 22 J. I. Tanttu, R. E. Sepponen, M. J. Lipton, T. Kuusela, Synergistic enhancement of MRI with Gd-DTPA and magnetization transfer. J. Comput. Assist. Tomogr. 16 (1), 19–24 (1992).
- 23 R. C. Brasch, H. J. Weinmann, G. E. Wesbey, Contrast enhanced NMR imaging: animal Animal studies using gadolinium-DTPA complex. Am. J. Roentgenol. 142, 625–630 (1984).
- 24 G. Strich, P. L. Hagal, K. H. Gerber, R. A. Slutsky, Tissue distribution and magnetic spin lattic relaxation effects of gadolinium-DTPA. Radiology 154, 723–726 (1985).
- 25 B. S. Hu, S. M. Conolly, G. A. Wright, A. Macovski, Pulsed saturation transfer contrast. Magn. Reson. Med. 26, 231–240 (1992).
- 26 H. N. Yeung, A. M. Aisen, Magnetization transfer contrast with periodic pulsed saturation. Radiology 183, 209–214 (1992).
- 27 U. Hoffmann, G. Brix, M. V. Knopp, T. Hess, W. J. Lorenz, Pharmacokinetic mapping of the breast: A new method for dynamic MR mammography. Magn. Reson. Med. 33, 506–514 (1995).