A precise and fast temperature mapping using water proton chemical shift
Corresponding Author
Yasutoshi Ishihara
Toshiba R & D Center, Kawasaki, 210 Japan
Yasutoshi Ishihara, Toshiba R & D Center, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 210 Japan===Search for more papers by this authorKagayaki Kuroda
Faculty of Engineering, Osaka City University, Osaka, 558 Japan
Search for more papers by this authorYutaka Suzuki
Faculty of Engineering, Osaka City University, Osaka, 558 Japan
Search for more papers by this authorCorresponding Author
Yasutoshi Ishihara
Toshiba R & D Center, Kawasaki, 210 Japan
Yasutoshi Ishihara, Toshiba R & D Center, 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 210 Japan===Search for more papers by this authorKagayaki Kuroda
Faculty of Engineering, Osaka City University, Osaka, 558 Japan
Search for more papers by this authorYutaka Suzuki
Faculty of Engineering, Osaka City University, Osaka, 558 Japan
Search for more papers by this authorAbstract
A new temperature measurement procedure using phase mapping was developed that makes use of the temperature dependence of the water proton chemical shift. Highly accurate and fast measurements were obtained during phantom and in vivo experiments. In the pure water phantom experiments, an accuracy of more than ± 0.5°C was obtained within a few seconds/slice using a field echo pulse sequence (TR/TE = 115/13 ms, matrix = 128 × 128, number of slices = 5). The temperature dependence of the water proton chemical shift was found to be almost the same for different materials with a chemical composition similar to living tissues (water, glucide, protein). Using this method, the temperature change inside a cat's brain was obtained with an accuracy of more than ± 1°C and an in-plane resolution of 0.6 x 0.6 mm. The temperature measurement error was affected by several factors in the living system (B0 shifts caused by position shifts of the sample, blood flow, etc.), the position shift effect being the most serious.
Reference
- 1 M. M. Raskin, M. M. Lopez, J. J. Sheldon, Lumbar thermography in discogenic disease. Radiology 119, 149–152 (1976).
- 2 J. M. Spitalier, D. Giraud, F. Amalric, The importance of the abnormal and isolated breast thermogram. Acta Thermogr. 5, 152 (1980).
- 3 R. Pochaczevsky, C. E. Wexler, P. H. Meyers, J. A. Epstein, J. A. Marc, Liquid crystal thermography of the spine and extremities. J. Neurosurg. 56, 386–395 (1982).
- 4 J. Senyk, A. Malm, S. Bornmyr, Intraoperative cardiother-mography. Eur. Surg. Res. 3, 1–12 (1971).
- 5 F. Robicsek, T. N. Masters, R. H. Svenson, W. G. Daniel, Experimental observation of coronary blood flow using the thermographic camera. Coll. Works Cardiopulm. Dis. 22, 57–64 (1979).
- 6 W. Daniel, H. Klein, R. Hetzer, Thermocardiography–a method for continuous assessment of myocardial perfusion dynamics in the exposed animal and human heart. Thorac. Cardiovasc. Surg. 27, 51–57 (1979).
- 7 H. R. Matthews, J. B. Meade, C. C. Evans, Peripheral vaso-constriction after open-heart surgery. Thorax 29, 338–342 (1974).
- 8 J. H. Kim, E. W. Hahn, Clinical and biological studies of localized hyperthermia. Cancer Res. 39, 2258–2261 (1979).
- 9 H. E. Cline, J. F. Schenck, R. D. Watkins, K. Hynenen, F. A. Jolesz, Magnetic resonance-guided thermal surgery. Magn. Reson. Med. 30, 98–106 (1993).
- 10 H. E. Cline, K. Hynenen, C. J. Hardy, R. Watkins, J. F. Schenck, F. A. Jolesz, MR temperature mapping of focused ultrasound surgery. Magn. Reson. Med. 31, 628–636 (1994).
- 11 V. D. Köchli, C. A. V. Weymarn, K. Zweifel, J. D'Alfonso, G. K. V. Schulthess, Towards monitoring percutaneous laser discectomy with temperature sensitive echo planar imaging, in “Proc., SMRM, 12th Annual Meeting, New York, 1993,” p. 157.
- 12 Y. Amemiya, Y. Kamimura, Thermometry of hot spot using NMR for hyperthermia. Trans. IECE J66-C, 203–210 (1983).
- 13 B. Knüttel, H. P. Juretschke, Temperature measurements by nuclear magnetic resonance and its possible use as a means of in vivo noninvasive temperature measurement and for hyperthermia treatment assessment. Recent Results Cancer Res. 101, 109–118 (1986).
- 14 J. L. Ackerman, L. C. Clark Jr, S. R. Thomas, R. G. Pratt, R. A. Kinsey, F. Becattini, NMR thermal imaging, in “Proc., SMRM, 3rd Annual Meeting, New York, 1984,” p. 1–2.
- 15 B. D. Youl, C. P. Hawkins, J. K. Morris, E. P. G. H. DuBoulay, P. S. Tofts, In vivo T1 values from guinea pig brain depend on body temperature. Magn. Reson. Med. 24, 170–173 (1992).
- 16 I. R. Young, J. W. Hand, A. Oatridge, M. V. Prior, N. Saeed, G. R. Forse, Impact of perfusion changes on in vivo measurement of temperature with MRI using T1 changes, in “Proc., SMRM, 12th Annual Meeting, New York, 1993,” p. 1279.
- 17 J. H. Simpson, H. Y. Carr, Diffusion and nuclear spin relaxation in water. Phys. Rev. 111, 1201–1202 (1958).
- 18 D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, L. Fussell, Temperature distribution measurements in two-dimensional NMR imaging. Med. Phys. 10, 321–325 (1983).
- 19 R. J. Dickinson, A. S. Hall, A. J. Hind, I. R. Young, Measurement of changes in tissue temperature using MR imaging. J. Comput. Assist. Tomogr. 10, 468–472 (1986).
- 20 A. S. Hall, M. V. Prior, J. W. Hand, I. R. Young, R. J. Dickinson, Observation by MR imaging of in vivo temperature changes induced by radio frequency hyperthermia. J. Comput. Assist. Tomogr. 14, 430–436 (1990).
- 21 D. LeBihan, J. Delannoy, R. L. Levin, Mapping of temperature using intra-voxel incoherent motion (IVIM) MR imaging application to hyperthermia, in “Proc., SMRM, 7th Annual Meeting, San Francisco, 1988”, p. 881.
- 22 D. LeBihan, J. Delannoy, R. L. Levin, Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171, 853–857 (1989).
- 23 J. Delannoy, C. N. Chen, R. Turner, R. L. Levin, D. LeBihan, Noninvasive temperature imaging using diffusion MRI. Magn. Reson. Med. 19, 333–339 (1991).
- 24 Y. Zhang, T. V. Samulsky, W. T. Joines, J. Mattiello, R. L. Levin, D. LeBihan, On the accuracy of noninvasive thermometry using molecular diffusion magnetic resonance imaging. Int. J. Hyperthermia 8, 263–274 (1992).
- 25 L. A. Woolf, Tracer diffusion of tritiated water (THO) in ordinary water (H2O) under pressure. J. Chem. Soc. Faraday I. 71, 784–796 (1975).
- 26 D. LeBihan, J. Delannoy, R. Levin, J. Pekar, O. LeDour, Temperature dependence of water molecular diffusion in brain tissue., in “Proc., SMRM, 8th Annual Meeting, Amsterdam, 1989,” p. 141.
- 27 W. G. Schneider, H. J. Bernstein, J. A. Pople, Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules. J. Chem. Phys. 28, 601–607 (1958).
- 28 N. Muller, Concerning structural models for water and chemical-shift data. J. Chem. Phys. 43, 2555–2556 (1965).
- 29 J. C. Hindman, Proton resonance shift of water in the gas and liquid states. J. Chem. Phys. 44, 4582–4592 (1966).
- 30 N. Muller, R. C. Reiter, Temperature dependence of chemical shifts of protons in hydrogen bonds. J. Chem. Phys. 42, 3265–3269 (1965).
- 31 N. W. Lutz, A. C. Kuesel, W. E. Hull, A 1H-NMR method for determining temperature in cell culture perfusion systems. Magn. Reson. Med. 29, 113–118 (1993).
- 32 L. D. Hall, S. L. Talagara, Mapping of pH and temperature distribution using chemical-shift-resolved tomography. J. Magn. Reson. 65, 501–505 (1985).
- 33 K. Kuroda, N. Somatani, Y. Suzuki, Y. Ishihara, K. Okamoto, Y. Suzuki, Temperature mapping using water proton chemical shift., in “Proc., SMR, 2nd Annual Meeting, San Francisco, 1994,” p. 1569.
- 34 K. Kuroda, Y. Suzuki, Y. Ishihara, K. Okamoto, Y. Suzuki, Temperature mapping by water proton resonance frequency obtained with 3D-MRSI. Magn. Reson. Med., in press.
- 35 K. Kuroda, Y. Miki, N. Nakagawa, S. Tsutsumi, Y. Ishihara, Y. Suzuki, K. Sato, Non-invasive temperature measurement by means of NMR parameters–Use of proton chemical shift with spectral estimation technique. Med. Biol. Eng. Comput. 29, 902 (1991).
- 36 J. De Poorter, The proton resonance frequency method for noninvasive MRI thermometry: study of susceptibility effects., in “Proc., SMR, 2nd Annual Meeting, San Francisco, 1994,” p. 426.
- 37 Y. Ishihara, A. Calderon, H. Watanabe, K. Mori, K. Okamoto, Y. Suzuki, K. Sato, K. Kuroda, N. Nakagawa, S. Tsutsumi, A precise and fast temperature mapping using water proton chemical shift, in “Proc., SMRM, 11th Annual Meeting, Berlin, 1992,” p. 4803.
- 38 K. Sekihara, S. Matsui, H. Kohno, A new method of measuring static field distribution using modified Fourier NMR imaging. J. Phys. E. 18, 224–227 (1985).
- 39 J. De Poorter, C. De Wagter, Y. De Deene, C. Thomsen, F. Ståhlberg, E. Achten, The proton-resonance-frequency-shift method compared with molecular diffusion for quantitative measurement of two-dimensional time-dependent temperature distribution in a phantom. J. Magn. Reson. 103, 234–241 (1994).
- 40 J. De Poorter, C. De Wagter, Y. De Deene, C. Thomsen, F. Stǎhlberg, E. Achten, Non-invasive in-vivo thermometry with the proton resonance frequency method: qualitative results in human muscle, in “Proc., SMRM, 12th Annual Meeting, New York, 1993,” p. 738.
- 41 R. Stollberger, M. Fan, E. Ebner, P. W. Ascher, R. Kleinert, Mapping of temperature changes in heterogeneous tissues for the monitoring of hyperthermia, in “Proc., SMRM, 12th Annual Meeting, New York, 1993,” p. 156.
- 42 J. R. MacFall, T. V. Samulski, D. M. Prescott, E. Fullar, Thermal mapping using the MR image phase in vivo during hyperthermia, in “Proc., SMR, 2nd Annual Meeting, San Francisco, 1994,” p. 1578.
- 43 R. Stollberger, E. Ebner, P. W. Ascher, Real-time temperature imaging of interstitial laser thermotherapy using the water proton chemical shift, in “Proc., SMR, 2nd Annual Meeting, San Francisco, 1994,” p. 1584.
- 44 K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, C. E. Stern, J. R. Baker, R. M. Weisskoff, R. Benson, B. P. Poncelet, B. E. Hoppel, D. N. Kennedy, R. Turner, M. S. Cohen, T. J. Brady, B. R. Rosen, Real time imaging of perfusion change and blood oxygenation change with EPI, in “Proc., SMRM, 11th Annual Meeting, Berlin, 1992,” p. 301.