MR imaging of regional cardiac function: Low-pass filtering of wall thickness curves
Corresponding Author
Hildo J. Lamb MSc
Department of Diagnostic Radiology, University Hospital Leiden, The Netherlands
Department of Diagnostic Radiology, Building 1, C2-S, University Hospital Leiden, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands===Search for more papers by this authorRoss R. Singleton
Department of Cardiovascular Disease, University of Alabama at Birmingham
Search for more papers by this authorRob J. Der Van Geest
Laboratory for Clinical and Experimental Image Processing, University Hospital Leiden, The Netherlands
Search for more papers by this authorGerald M. Pohost
Department of Cardiovascular Disease, University of Alabama at Birmingham
Search for more papers by this authorAlbert De Roos
Department of Diagnostic Radiology, University Hospital Leiden, The Netherlands
Search for more papers by this authorCorresponding Author
Hildo J. Lamb MSc
Department of Diagnostic Radiology, University Hospital Leiden, The Netherlands
Department of Diagnostic Radiology, Building 1, C2-S, University Hospital Leiden, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands===Search for more papers by this authorRoss R. Singleton
Department of Cardiovascular Disease, University of Alabama at Birmingham
Search for more papers by this authorRob J. Der Van Geest
Laboratory for Clinical and Experimental Image Processing, University Hospital Leiden, The Netherlands
Search for more papers by this authorGerald M. Pohost
Department of Cardiovascular Disease, University of Alabama at Birmingham
Search for more papers by this authorAlbert De Roos
Department of Diagnostic Radiology, University Hospital Leiden, The Netherlands
Search for more papers by this authorAbstract
Wall thickness curves (WTCs) derived from MR images are subject to considerable measurement error. This study determines the effects of low-pass Fourier filtering of WTCs on functional parameters derived from the curve: peak rate of wall thinning (PRWT) and time to PRWT (TPRWT). The inter-subject standard deviation (SD) of PRWT changed from 0.35 to 0.18, and the SD of TPRWT from 34.3 to 29.5. Differences between neighboring segments decreased from 0.31 to 0.15% mean thickness/ms for PRWT (P = 0.012), and from 35.0 to 19.0 ms for TPRWT (P = 0.005). It is concluded that filtering of MR imaging-derived WTCs contributes to a better representation of myocardial wall motion.
Reference
- 1 D. Tscholakoff, C. B. Higgins, Gated magnetic resonance imaging for assessment of cardiac function and myocardial infarction. Radiol. Clin. North. Am. 23, 449–457 (1985).
- 2 J. Katz, M. C. Milliken, J. Stray-Gundersen, Estimation of human myocardial mass with MR imaging. Radiology 169, 495–498 (1988).
- 3 J. Møgelvang, C. Thomsen, J. Mehlsen, G. Bräckle, M. Stubgaard, O. Henriksen, Evaluation of left ventricular volumes measured by magnetic resonance imaging. Eur. Heart J. 7, 1016–1021 (1986).
- 4 A. C. Van Rossum, F. C. Visser, M. Sprenger, M. J. Van Eenige, J. Valk, J. P. Roos, Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am. J. Cardiol. 62, 628–633 (1988).
- 5 C. S. Lotan, G. B. Cranney, A. Bouchard, V. Bittner, G. M. Pohost, The value of cine nuclear magnetic resonance imaging for assessing regional ventricular function. J. Am. Coll. Cardiol. 14, 1721–1729 (1989).
- 6 P. W. Pflugfelder, U. Sechtem, R. D. White, C. B. Higgins, Quantification of regional myocardial function by rapid cine MR imaging. AJR Am. J. Roentgenol. 150, 523–529 (1988).
- 7 F. P. van Rugge, E. R. Holman, E. E. van der Wall, A. de Roos, A. van der Laarse, A. V. G. Bruschke, Quantification of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal subjects. Eur. Heart J. 14, 456–463 (1993).
- 8 U. Sechtem, B. A. Sommerhoff, W. Markiewicz, R. D. White, M. D. Cheitlin, C. B. Higgins, Regional left ventricular wall thickening by magnetic resonance imaging: evaluation in normal persons and patients with global and regional dysfunction. Am. J. Cardiol. 59, 145–151 (1987).
- 9 E. Schwammenthal, T. Wichter, K. Joachimsen, W. Auffermann, P. E. Peters, G. Breithardt, Detection of regional left ventricular asynchrony in obstructive hypertrophic cardiomyopathy by magnetic resonance imaging. Am. Heart J. 127, 600–606 (1994).
- 10 E. S. Monrad, O. M. Hess, T. Murakami, H. Nonogi, W. J. Corin, H. P. Krayenbuehl, Abnormal exercise hemodynamics in patients with normal systolic function late after aortic valve replacement. Circulation 77, 613–624 (1988).
- 11 R. O. Bonow, Radionuclide angiographic evaluation of left ventricular diastolic function. Circulation 84, 1208–1215 (1991).
- 12 G. J. Waldman, P. Dendale, J. Doornbos, S. Rebergen, A. de Roos, Normal regional and global diastolic function. Analysis and quantification with MRI, in “Proc., SMRM, 12th Annual Meeting, New York, 1993,” p. 275.
- 13 G. Cloutier, L. Allard, Z. Guo, L. G. Durand, The effect of averaging cardiac Doppler spectrograms on the reduction of their amplitude variability. Med. Biol. Eng. Comput. 30, 177–186 (1992).
- 14
S. L. Bacharach,
M. V. Green,
D. Vitale,
G. White,
R. O. Bonow,
M. A. Douglas,
A. E. Jones,
S. M. Larson,
Fourier filtering cardiac time activity curves: Sharp cutoff filters,
in “ Information Processing in Medical Imaging”
( F. Deconinck, Ed.),
pp. 266–281,
Martinus Nijhoff Publishing, Boston,
1984.
10.1007/978-94-009-6045-9_16 Google Scholar
- 15 H. Valette, M. H. Bourguignon, M. C. Gregoire, P. Merlet, O. Pascal, P. Briandet, D. Le Guludec, A. Syrota, Filters and Fourier analysis of gated blood pool studies: a search for the optimal combination. Phys. Med. Biol. 35, 1–9 (1990).
- 16 K. Murase, T. Mochizuki, Y. Fujiwara, S. Tanada, K. Hamamoto, Application of Hilbert transform to radionu-clide-gated cardiac studies: analysis of asynchronous emptying and filling in various heart diseases. Am. J. Physiol. Imaging 7, 24–31 (1992).
- 17 R. Jane, H. Rix, P. Caminal, P. Laguna, Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance. IEEE Trans. Biomed. Eng. 38, 571–579 (1991).
- 18 C. Timmermans, H. Ector, K. W. Haisty, S. C. Hammill, M. G. Kienzle, Y. Ozawa, B. R. Reddy, D. A. Underwood, Signal-averaged ECG parameters in cardiac normals using Frank lead system and Fourier transform filter and gender specific differences: a multicenter study. PACE Pacing Clin. Electro-physiol. 17, 303–311 (1994).
- 19 M. Doyle, P. Mansfield, Real-time movie image enhancement in NMR. J. Phys. [E] 19, 439–444 (1986).
- 20 R. J. Van der Geest, E. Jansen, V. G. M. Buller, J. H. C. Reiber, Automated detection of left ventricular epi- and endocardial contours in short-axis MR images. Comput. Cardiol. 33-36 (1994).
- 21 C. D. Von Land, S. R. Rao, J. H. C. Reiber, Development of an improved centerline wall motion model. Comput. Cardiol. 687-690 (1991).
- 22 W. K. Pratt, “ Digital Image Processing,” John Wiley & Sons, New York, 1991.
- 23 D. Durrer, R. T. van Dam, G. E. Freud, M. J. Janse, F. L. Meijler, R. C. Arzbaecher, Total excitation of the isolated human heart. Circulation 41, 899–912 (1970).