Hybrid transistor manipulation controlled by light
Nathaporn Suwanpayak
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Search for more papers by this authorChat Teeka
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Search for more papers by this authorCorresponding Author
Preecha P. Yupapin
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Nanoscale Science and Engineering Research Alliance (N'sERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandSearch for more papers by this authorNathaporn Suwanpayak
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Search for more papers by this authorChat Teeka
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Search for more papers by this authorCorresponding Author
Preecha P. Yupapin
Nanoscale Science and Engineering Research Alliance (N'SERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Nanoscale Science and Engineering Research Alliance (N'sERA), Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandSearch for more papers by this authorAbstract
In this article, the novel type of transistor known as a hybrid transistor is proposed, in which all types of transistors can be formed by using a microring resonator called a PANDA microring resonator.In principle, such a transistor can be used to form for various transistor types by using the atom/molecule trapping tools, which is named by an optical tweezer, where, in application, all type of transistors, especially, molecule and photon transistors can be performed by using the trapping tools, which will be described in details. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:2533–2537, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26326
REFERENCES
- 1 J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gotzinger, and V. Sandoghdar, A single-molecule optical transistor, Nature 460 ( 2009), 76–80.
- 2 F.Y. Hong and S.J. Xiong, Single-photon transistor using microtroidal resonators, Phys Rev A, 72 ( 2008), 013812.
- 3 D.E. Chang, A.S. Sorensen, E.A. Demler, and M.D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nat Phys 3 ( 2007), 807–812.
- 4 A. Micheli, A.J. Daley, D. Jaksch, and P. Zoller, Single atom transistor in a 1D optical lattice, Phys Rev Lett 93 ( 2004), 140408.
- 5 A.J. Daley, S.R. Clark, D. Jaksch, and P. Zoller, Numerical analysis of coherent many-body currents in a single atom transistor, Phys Rev A 72 ( 2005), 043618.
- 6 M.F. Yanik, S. Fan, M. Soljacic, and J.D. Joannopoulos, All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Opt Lett 28, 2506–2508, 2003.
- 7 Y. Huang and S.T. Ho, High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference, Opt Express 16 ( 2008), 16806–16824.
- 8 S. Medhekar and R.K. Sarkar, All-optical passive transistor, Opt Lett 30 ( 2005), 887–889.
- 9 K. Uomwech, K. Sarapat, and P.P. Yupapin, Dynamic modulated Gaussian pulse propagation within the double PANDA ring resonator system, Microwave Opt Technol Lett 52 ( 2010), 1818–1821.
- 10 T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P.P. Yupapin, Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator, J Lightwave Technol 28 ( 2010), 2804–2809.
- 11 N. Suwanpayak, M.A. Jalil, C. Teeka, J. Ali, and P.P. Yupapin, Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications, Biomed Opt Express 2 ( 2011), 159–168.
- 12 P.P. Yupapin, N. Suwanpayak, B. Jukgoljun, and C. Teeka, Hybrid transceiver using a PANDA ring resonator for Nanocommunication, Phys Express 1 ( 2011), 1–9.
- 13 M. Tasakorn, C. Teeka, R. Jomtarak, and P.P. Yupapin, Multitweezers generation control within a nanoring resonator system, Opt Eng 49 ( 2010), >075002.
- 14 B. Jukgoljun, N. Suwanpayak, C. Teeka, and P.P. Yupapin, Hybrid transceiver and repeater using a PANDA ring resonator for nano communication, Opt Eng 49 ( 2010), 125003.
- 15 P. Youplao, T. Phattaraworamet, S. Mitatha, C. Teeka, and P.P. Yupapin, Novel optical trapping tool generation and storage controlled by light, J Nonlinear Opt Phys Mater 19 ( 2010), 371–378.
- 16 K. Sarapat, N. Sangwara, K. Srinuanjan, P.P. Yupapin, and N. Pornsuwancharoen, Novel dark-bright optical solitons conversion system and power amplification, Opt Eng 48 ( 2009), 045004–1–045004–5.
- 17 S. Mitatha, N. Chaiyasoonthorn, and P.P. Yupapin, Dark-bright optical solitons conversion via an optical add/drop filter, Microwave Opt Technol Lett 51 ( 2009), 2104–2107.
- 18 T. Threepak, X. Luangvilay, S. Mitatha, and P.P. Yupapin, Novel quantum-molecular transporter and networking via a wavelength router, Microwave Opt Technol Lett 52 ( 2010), 1353–1357.
- 19 K. Kulsirirat, W. Techithdeera, and P.P. Yupapin, Dynamic potential well generation and control using double resonators incorporating in an add/drop Filter, Mod Phys Lett B 24 ( 2010), 3071–3080.
- 20 S. Mitatha, N. Pornsuwancharoen, and P.P. Yupapin, A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide, IEEE Photon Technol Lett 21 ( 2009), 932–934.
- 21 Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius, IEEE J Sel Top Quantum Electron 11 ( 2005), 4–10.