Metamaterial slabs enhanced modified antipodal Vivaldi antenna
Ziye Wang
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorMinjie Guo
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorXiao Zhao
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorCorresponding Author
Linyan Guo
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Correspondence
Linyan Guo, School of Geophysics and Information Technology, China University of Geosciences, Beijing, China.
Email: [email protected]
Search for more papers by this authorZhengwei Yang
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorLianfeng Chen
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorZiye Wang
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorMinjie Guo
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorXiao Zhao
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorCorresponding Author
Linyan Guo
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Correspondence
Linyan Guo, School of Geophysics and Information Technology, China University of Geosciences, Beijing, China.
Email: [email protected]
Search for more papers by this authorZhengwei Yang
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorLianfeng Chen
School of Geophysics and Information Technology, China University of Geosciences, Beijing, China
Search for more papers by this authorFunding information: National Natural Science Foundation of China, Grant/Award Numbers: 41974092, 41704176; Fundamental Research Funds for the Central Universities from China, Grant/Award Number: 2652019036; National Key Research and Development Program of China, Grant/Award Numbers: 2018YFC0604104, 2016YFC0600201
Abstract
A metamaterials slabs covered antipodal Vivaldi antenna (MSCAVA) is proposed herein to improve directivity and gain. The proposed metamaterials slabs have a higher effective permittivity than the substrate. The design process of proposed MSCAVA is presented, along with the comparison with other existing works. The simulated and measured results show that the −10 dB bandwidth of the proposed antenna is 1.5 to 8 GHz while the E-planes' and H-planes' half-power beamwidth have been effectively reduced. The maximum gain is 16.4 dBi at 8 GHz. Owing to those good properties, the proposed MSCAVA could be used in short-pulse ground penetrating radar and other situations where need high gain and directivity.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Oliverira A, Perotoni MB, Kofuji ST, Justo JF. A palm tree antipodal Vivaldi antenna with exponential slot edge for improved radiation pattern. IEEE Antennas Wirel Propag Lett. 2015; 14: 1334-1337.
- 2Z. Yin, X. Yang, T. Lou. A high gain UWB Vivaldi antenna loaded with elliptical slots. Paper presented at: International Applied Computational Electromagnetics Society Symposium (ACES), Beijing, China, July, 2018.
- 3Zhu S, Liu H, Wen P, du L, Zhou J. A miniaturized and high gain double-slot Vivaldi antenna using wideband index-near-zero metasurface. IEEE Access. 2018; 6: 72015-72024.
- 4Zhang Y, Li E, Wang C, Guo G. Radiation enhanced Vivaldi antenna with double-antipodal structure. IEEE Antennas Wirel Propag Lett. 2016; 16: 561-564.
- 5Moosazadeh M, Kharkovsky S. A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas Wirel Propag Lett. 2017; 15: 552-555.
- 6Moosazadeh M. High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications. IEEE Trans Antennas Propag. 2018; 66(8): 449-4352.
- 7Arezoomand AS, Sadeghzadeh R, Naser-Moghadasi M. Novel techniques in tapered slot antenna for linearity phase center and gain enhancement. IEEE Antennas Wirel Propag Lett. 2017; 16: 270-273.
- 8Arezoomand AS, Sadeghzadeh R, Naser-Moghadasi M. Investigation and improvement of the phase center characteristics of Vivaldi antenna for UWB applications. Microw Opt Techn Lett. 2016; 58(6): 1275-1281.
- 9Biswas B, Ghatak R, Poddar D. A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Trans Antennas Propag. 2017; 65(11): 6126-6129.
- 10Yu S, Lin S, Zhang Y, Zhu B. A non-curved broadband high-gain Vivaldi antenna. Paper presented at: IEEE International Symposium Antenna and Propagation (ISAP), Busan, Korea, October 2018.
- 11Sang L, Sang L, Li XX, Chen T, Lv GQ. Analysis and design of tapered slot antenna with high gain for ultra-wideband based on optimization of metamaterial unit layout. IET Microw Antennas Propag. 2017; 11: 907-914.
- 12Nassar I, Weller T. A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans Antennas Propag. 2015; 63(7): 3321-3324.
- 13Su Y, Chen Z. A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials. IEEE Trans Antennas Propag. 2018; 66(10): 5088-5097.
- 14Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna. IEEE Trans Antennas Propag. 2016; 64(5): 1968-1973.
- 15Li H, Wang G, Liang J, Gao X, Hou H, Jia X. Single-layer focusing gradient metasurface for ultrathin planar lens antenna application. IEEE Trans Antennas Propag. 2017; 65(3): 1452-1457.
- 16Gajibo MM, Rahim MKA, Ayop O, Murad NA, Baba MA, Majid HA. X-Band Directivity Improvement Using Reflector. Paper presented at: International Symposium Antennas and Propagation (ISAP), Busan, Korea, October. 2018.
- 17M. Ameen, R. K. Chaudhary, Quad-band electrically small dual-polarized ZOR antenna with improved bandwidth using single-split ring resonators and spiral slots enabled with reflector for GPS/ UMTS/ WLAN/ WiMAX applications. Paper presented at: URSI Asia-Pacific Radio Science Conference (AP-RESC), New Delhi, India, March, 2019.
- 18Rezaeieh SA, Antoniades MA, Abbosh AM. Miniaturization of planar Yagi antennas using mu-negative metamaterial-loaded reflector. IEEE Trans Antennas Propag. 2017; 65(12): 6827-6837.
- 19Guo L, Yang H, Zhang Q, Deng M. A compact antipodal tapered slot antenna with artificial material lens and reflector for GPR applications. IEEE Access. 2018; 6: 44244-44251.
- 20Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Trans Antennas Propag. 2013; 61(3): 1479-1484.
- 21Liu Y, Zhao X. Perfect absorber metamaterial for designing low-RCS patch antenna. IEEE Antennas Wirel Propag Lett. 2014; 13: 1473-1476.
- 22Ren J, Gong S, Jiang W. Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber. IEEE Antennas Wirel Propag Lett. 2018; 17(1): 102-105.
- 23Feng G, Chen L, Xue X, Shi X. Broadband surface-wave antenna with a novel nonuniform tapered metasurface. IEEE Antennas Wirel Propag Lett. 2017; 16: 2902-2905.
- 24Zhang W, Liu Y, Jia Y. Circularly polarized antenna array with low RCS using metasurface-inspired antenna units. IEEE Antennas Wirel Propag Lett. 2019; 18: 1453-1457.
- 25Li SJ, Li YB, Zhang L, Luo ZJ, Han BW, et al. Programmable controls to scattering properties of a radiation array. Laser Photon Rev. 2021.
- 26Zhang W, Liu Y, Gong S, Wang J, Jiang Y. Wideband RCS reduction of a slot array antenna using phase gradient metasurface. IEEE Antennas Wirel Propag Lett. 2018; 17(12): 2193-2197.
- 27Li XX, Lu BJ, Sang L, Zhang YM, Lv GQ. Radiation enhanced Vivaldi antenna with shaped dielectric cover. Microw Opt Technol Lett. 2017; 59(8): 1975-1983.
- 28Chen L, Lei Z, Yang R, Fan J, Shi X. A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Trans Antennas Propag. 2015; 63(1): 395-400.
- 29Molaei A, Kaboli M, Mirtaheri SA, Abrishamian MS. Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microwave Antennas Propag. 2014; 8(14): 1137-1142.
- 30Liu Y, Jia Y, Zhang W, Li F. Wideband RCS reduction of a slot array antenna using a hybrid metasurface. IEEE Trans Antennas Propag. 2020; 68(5): 3644-3652.
- 31Szabo Z, Park GH, Hedge R, Li EP. A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Trans Microw Theory. 2010; 58(10): 2646-2653.
- 32Li X, Zhou H, Gao Z, Wang H, Lv G. Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas Wirel Propag Lett. 2017; 16: 2943-2946.