Analysis on effect of lateral straggle on analog, high frequency and DC parameters in Ge-source DMDG TFET
Corresponding Author
Rajesh Saha
Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
Correspondence
Rajesh Saha, Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
Email: [email protected]
Search for more papers by this authorDeepak Kumar Panda
School of Electronics, VIT AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorRupam Goswami
School of Electronics, Tezpur University, Tezpur, Assam, India
Search for more papers by this authorBrinda Bhowmick
Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, India
Search for more papers by this authorSrimanta Baishya
Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, India
Search for more papers by this authorCorresponding Author
Rajesh Saha
Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, Jaipur, Rajasthan, India
Correspondence
Rajesh Saha, Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India.
Email: [email protected]
Search for more papers by this authorDeepak Kumar Panda
School of Electronics, VIT AP University, Amaravati, Andhra Pradesh, India
Search for more papers by this authorRupam Goswami
School of Electronics, Tezpur University, Tezpur, Assam, India
Search for more papers by this authorBrinda Bhowmick
Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, India
Search for more papers by this authorSrimanta Baishya
Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, India
Search for more papers by this authorFunding information: Science and Engineering Research Board, Grant/Award Number: SRG/2019/000628
Abstract
The diffusion of doping concentration in source/drain regions through ion implantation technique extents to the channel, which decreases the inversion portion of channel and results in variation of device behavior. In this paper, by merging the advantages of Ge-source TFET and dual material gate (DMG) TFET, a new device named as Ge-source dual material double gate (DMDG) TFET is proposed. We have investigated DC parameters like drain current vs gate bias, drain current vs drain bias, subthreshold swing (SS), and current ratio (ION/IOFF) by changing the lateral straggle parameter (σ) from 0 to 5 nm through TCAD device simulator in proposed TFET. The RF/analog behavior like transconductance (gm), output conductance (gd), intrinsic gain (gm/gd), total gate capacitance (Cgg), cut-off frequency (fc), transconductance generation factor (TGF), transconductance frequency product (TFP), gain frequency product (GFP), and gain transconductance frequency product (GTFP) are reported for different σ values in proposed TFET. It is found that both DC and RF/analog figure of merits are a function of σ. It is perceived that ION as well as RF/analog characteristics are improved, whereas, short channel parameter degrades with increase in σ. Finally, the effect of σ on noise performance and s-parameters are highlighted in proposed device.
Open Research
DATA AVAILABILITY STATEMENT
This manuscript does not have any data availability
REFERENCES
- 1Qin Z, Wei Z, Seabaugh A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 2006; 27(4): 297-300. https://doi.org/10.1109/LED.2006.871855.
- 2Seabaugh AC, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE. 2010; 98(12): 2095-2110. https://doi.org/10.1109/JPROC.2010.2070470.
- 3Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011; 479(7373): 329-337. https://doi.org/10.1038/nature10679.
- 4Choi WY, Park B-G, Lee J-D, Liu T-JK. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 2007; 28(8): 743-745. https://doi.org/10.1109/LED.2007.901273.
- 5Nirschl T, Weis M, Fulde M, Landsiedel DS. Correction to revision of tunneling field-effect transistor in standard CMOS technologies. IEEE Electron Device Lett. 2007; 28(4): 315-315. https://doi.org/10.1109/LED.2007.893272.
- 6Koswatta SO, Lundstrom MS, Nikonov DE. Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices. 2009; 56(3): 456-465. https://doi.org/10.1109/TED.2008.2011934.
- 7Pal A, Sachid AB, Gossner H, Rao VR. Insights into the design and optimization of tunnel-FET devices and circuits. IEEE Trans Electron Devices. 2011; 58(4): 1045-1053. https://doi.org/10.1109/TED.2011.2109002.
- 8Kang SC, Lim D, Kang SJ, et al. Hot-carrier degradation estimation of a silicon-on-insulator tunneling FET using ambipolar characteristics. IEEE Electron Device Lett. 2019; 40(11): 1716-1719. https://doi.org/10.1109/LED.2019.2942837.
- 9Liu L, Mohata D, Datta S. Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans Electron Devices. 2012; 59(4): 902-908. https://doi.org/10.1109/TED.2012.2183875.
- 10Kim SH, Kam H, Hu C, Liu T-JK. Ge-source tunnel field effect transistors with record high ION/IOFF. VLSI Symp Tech Dig. 2009; 178-179.
- 11Saha R, Bhowmick B, Baishya S. Impact of WFV on electrical parameters due to high-k/metal gate in SiGe channel tunnel FET. Microelectron Eng. 2019; 214. https://doi.org/10.1016/j.mee.2019.04.024.
- 12Saurabh S, Kumar MJ. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Devices. 2011; 58(2): 404-410. https://doi.org/10.1109/TED.2010.2093142.
- 13Dash S, Mishra GP. A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance. Adv Nat Sci Nanosci Nanotechnol. 2015; 6(3). https://doi.org/10.1088/2043-6262/6/3/035005.
- 14Choi WY, Lee W. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Devices. 2010; 57(9): 2317-2319. https://doi.org/10.1109/TED.2010.2052167.
- 15Raad BR, Nigam K, Sharma D, Kondekar PN. Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement. Superlattices Microstruct. 2016; 94: 138-146. https://doi.org/10.1016/j.spmi.2016.04.016.
- 16De Michielis L, Lattanzio L, Palestri P, Selmi L, Ionescu AM. Tunnel-FET architecture with improved performance due to enhanced gate modulation of the tunneling barrier. 69th Device Research Conference. Santa Barbara, CA; 2011: 111-112. https://doi.org/10.1109/DRC.2011.5994440.
10.1109/DRC.2011.5994440 Google Scholar
- 17Beniwal S, Saini G. L-shaped tunnelling field effect transistor with hetero-gate dielectric and hetero dielectric box. 3rd International Conference on Trends in Electronics and Informatics (ICOEI). Tirunelveli, India; 2019: 815-818. https://doi.org/10.1109/ICOEI.2019.8862520.
10.1109/ICOEI.2019.8862520 Google Scholar
- 18Sedighi B, Hu XS, Liu H, Nahas JJ, Niemier M. Analog circuit design using tunnel-FETs. IEEE Trans Circuits Syst I: Reg Papers. 2015; 62(1): 39-48. https://doi.org/10.1109/TCSI.2014.2342371.
- 19Settino F, Lanuzza M, Strangio S, et al. Understanding the potential and limitations of tunnel FETs for low-voltage analog/mixed-signal circuits. IEEE Trans Electron Devices. 2017; 64(6): 2736-2743. https://doi.org/10.1109/TED.2017.2689746.
- 20Narwal S, Chauhan SS. Investigation of RF and linearity performance of electrode work-function engineered HDB vertical TFET. Micro Nano Lett. 2019; 14(1): 17-21. https://doi.org/10.1049/mnl.2018.5307.
- 21Sahoo S, Dash S, Routray SR, Mishra GP. Impact of drain doping engineering on ambipolar and high-frequency performance of ZHP line-TFET. Semicond Sci Technol. 2020; 35(6). https://doi.org/10.1088/1361-6641/ab7ce7.
- 22Dennard RH, Gaensslen FH, Rideout VL, et al. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J Solid-State Circuits. 1974; 9: 256-268. https://doi.org/10.1109/JSSC.1974.1050511.
- 23Barboni L, Siniscalchi M, Sensale Rodriguez B. TFET-based circuit design using the transconductance generation efficiency gm/Id method. IEEE J Electron Devices Soc. 2015; 3(3): 208-216. https://doi.org/10.1109/JEDS.2015.2412118.
- 24Kwong MY, Kasnavi R, Griffin P, Plummer JD, Dutton RW. Impact of lateral source/drain abruptness on device performance. IEEE Trans Electron Devices. 2002; 49(11): 1882-1890. https://doi.org/10.1109/TED.2002.806790.
- 25Bansal A, Paul BC, Roy K. Impact of gate underlap on gate capacitance and gate tunneling current in 16 nm DGMOS devices. 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573); 2004: 94-95. https://doi.org/10.1109/SOI.2004.1391570.
10.1109/SOI.2004.1391570 Google Scholar
- 26Koley K, Dutta A, Saha SK, Sarkar CK. Effect of source/drain lateral straggle on distortion and intrinsic performance of asymmetric underlap DG-MOSFETs. IEEE J Electron Devices Soc. 2014; 2(6): 135-144. https://doi.org/10.1109/JEDS.2014.2342613.
- 27Ghosh S, Koley K, Sarkar CK. Impact of the lateral straggle on the analog and RF performance of TFET. Microelectron Reliab. 2015; 55: 326-331. https://doi.org/10.1016/j.microrel.2014.10.008.
- 28Ghosh S, Koley K, Sarkar CK. Deep insight into linearity and NQS parameters of tunnel FET with emphasis on lateral straggle. Micro Nano Lett. 2018; 13(1): 35-40. https://doi.org/10.1049/mnl.2017.0326.
- 29Saha R, Vanlalawmpuia K, Bhowmick B, Baishya S. Deep insight into DC, RF/analog, and digital inverter performance due to variation in straggle parameter for gate modulated TFET. Mater Sci Semicond Process. 2019; 91: 102-107. https://doi.org/10.1016/j.mssp.2018.11.011.
- 30Vanlalawmpuia K, Saha R, Bhowmick B. Performance evaluation of heterostacked TFET for variation in lateral straggle and its application as digital inverter. Appl Phys A: Mater Sci Process. 2018; 124(10): 701. https://doi.org/10.1007/s00339-018-2121-4.
- 31Debnath RG, Baishya S. Impact of source-doping gradient in terms of lateral straggle on the performance of germanium epitaxial layer double-gate TFET. Appl Phys A: Mater Sci Process. 2020; 124(11): 1-11. https://doi.org/10.1007/s00339-020-04084-2.
- 32Saha R. Linearity parameters evaluation due to lateral straggle in Ge-source DMDG-TFET. Silicon. 2020. https://doi.org/10.1007/s12633-020-00859-7.
- 33Mojumder NN, Roy K. Band-to-band tunneling ballistic nanowire FET: circuit-compatible device modeling and design of ultra-low-power digital circuits and memories. IEEE Trans Electron Devices. 2009; 56(10): 2193-2201. https://doi.org/10.1109/TED.2009.2028394.
- 34Wangkheirakpam VD, Bhowmick B, Pukhrambam PD. N+ pocket doped vertical TFET based dielectric-modulated biosensor considering non-ideal hybridization issue: a simulation study. IEEE Trans Nanotechnol. 2020; 19: 156-162. https://doi.org/10.1109/TNANO.2020.2969206.
- 35 Sentaurus Device User Guide. Synopsys, Inc.; 2013.
- 36Kao H, Verhulst AS, Vandenberghe WG, Sorée B, Groeseneken G, De Meyer K. Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices. 2012; 59(2): 292-301. https://doi.org/10.1109/TED.2011.2175228.
- 37Hoyniak D, Nowak E, Anderson RL. Channel electron mobility dependence on lateral electric field in field-effect transistors. J Appl Phys. 2000; 87: 876-881. https://doi.org/10.1063/1.371955.
- 38Yang Y, Tong X, Yang LT, Guo PF, Fan L, Yeo YC. Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett. 2010; 31(7): 752-754. https://doi.org/10.1109/LED.2010.2047240.
- 39Shrivastava R, Fitzpatrick K. A simple model for the overlap capacitance of a VLSI MOS device. IEEE Trans Electron Devices. 1982; 29(12): 1870-1875. https://doi.org/10.1109/T-ED.1982.21044.
- 40Kilchytska V, Neve A, Vancaillie L, et al. Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans Electron Devices. 2003; 50(3): 577-588. https://doi.org/10.1109/TED.2003.810471.
- 41Huang Q, Huang R, Chen C, et al. Deep insights into low frequency noise behavior of tunnel FETs with source junction engineering. Symposium on VLSI Technology: Digest of Technical Papers; 2014: 70-71. https://doi.org/10.1109/VLSIT.2014.6894371.
10.1109/VLSIT.2014.6894371 Google Scholar
- 42Pandey R, Rajamohanan B, Liu H, Narayanan V, Datta S. Electrical noise in hetero junction inter band tunnel FETs. IEEE Trans Electron Devices. 2014; 6: 552-560. https://doi.org/10.1109/TED.2013.2293497.
- 43Xu J, Jones R, Harris SA, Nielsen T, Root DE. Dynamic FET model – DynaFET for GaN transistors from NVNA active source injection measurements. International Microwave Symposium Digest. Tampa, FL; 2014.
10.1109/MWSYM.2014.6848293 Google Scholar