Radar cross-section reduction of an UWB MIMO antenna using image theory and its equivalent circuit model
Mohammad Khorramizadeh
Department of Electrical and Electronic Engineering, Shahed University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Sajad Mohammad-Ali-Nezhad
Department of Electrical and Electronics Engineering, University of Qom, Qom, Iran
Correspondence
Sajad Mohammad-Ali-Nezhad, Department of Electrical and Electronics Engineering, University of Qom, Qom, Iran.
Email: [email protected]
Search for more papers by this authorMohammad Khorramizadeh
Department of Electrical and Electronic Engineering, Shahed University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Sajad Mohammad-Ali-Nezhad
Department of Electrical and Electronics Engineering, University of Qom, Qom, Iran
Correspondence
Sajad Mohammad-Ali-Nezhad, Department of Electrical and Electronics Engineering, University of Qom, Qom, Iran.
Email: [email protected]
Search for more papers by this authorAbstract
An effective method to reduce the radar cross-section (RCS) of an ultra-wideband multiple-input multiple-output (MIMO) antenna is proposed. In order to reduce the RCS of the antenna, the antenna patch is divided into two parts, each of which contains a half of the antenna patch. That half which is not connected to the feed line is omitted with its substrate. A perfect electric conductor wall is used in front of the minimized structure to compensate for the effect of the omitted part. An equivalent circuit model for the MIMO antenna is proposed. The equivalent circuit model is simulated and optimized using advanced design system (ADS). The ADS results of the equivalent circuit model exhibit a reasonable agreement with the full wave results of the antenna. According to the results, the antenna shows a noticeable RCS reduction, a low mutual coupling of < −17.5 dB and a proper impedance bandwidth of 8.8 GHz in the range of 3 to 11.8 GHz. The diversity performance of the proposed antenna for example, diversity gain, envelope correlation coefficient (ECC), and the total active reflection coefficient is analyzed as well and an ECC of <0.11 is achieved.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Tu DTT, Hoc NV, Quan H, Yem VV. Compact MIMO antenna with low mutual coupling using defected ground structure. Paper presented at: IEEE Sixth International Conference on Communications and Electronics (ICCE); July 27-29, 2016; Ha-Long, Vietnam; 2016:242-247.
- 2Ranjan P, Patil M, Chand S, Ranjan A, Singh S, Sharma A. Investigation on dual-port printed MIMO antenna with reduced RCS for C-band radar application. Int J RF Microw Comput-Aided Eng. 2020; 30(3):e22092.
- 3Thummaluru SR, Kumar R, Chaudhary RK. Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface. IEEE Trans Antennas Propag. 2018; 66(3): 1595-1600.
- 4Wei K, Zhang Z, Chen W, Feng Z. A novel hybrid-fed patch antenna with pattern diversity. IEEE Antennas Wirel Propag Lett. 2010; 9: 562-565.
- 5Kaiser T, Zheng F, Dimitrov E. An overview of ultra-wide-band systems with MIMO. Proc IEEE. 2009; 97(2): 285-312.
- 6Ren J, Hu W, Yin Y, Fan R. Compact printed MIMO antenna for UWB applications. IEEE Antennas Wirel Propag Lett. 2014; 13: 1517-1520.
- 7Dadhich A. Study and design of slotted antenna with inset feed for multiband wireless application. Test Eng Manag. 2020; 83: 23465-23472.
- 8Dadhich A, Deegwal JK, Sharma M. A compact design of multiband microstrip monopole antenna for WLAN/WiMAX applications. Test Eng Manag. 2020; 83: 28622-28630.
- 9Dadhich A, Deegwal JK, Sharma M. Multiband slotted microstrip patch antenna for TD-LTE, ITU and X-band applications. Paper presented at: 5th International Conference on Signal Processing and Integrated Networks (SPIN); February 22-23, 2018; Noida, India; 2018:745-748.
- 10Pozar DM. RCS reduction for a microstrip antenna using a normally biased ferrite substrate. IEEE Microw Guided Wave Lett. 1992; 2(5): 196-198.
10.1109/75.134353 Google Scholar
- 11Volakis JL, Alexanian A, Lin JM. Broadband RCS reduction of rectangular patch by using distributed loading. Electron Lett. 1992; 28(25): 2322-2323.
- 12Li Y, Zhang H, Fu Y, Yuan N. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas Wirel Propag Lett. 2008; 7: 473-476.
- 13Genovesi S, Costa F, Monorchio A. Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Trans Antennas Propag. 2012; 60(5): 2327-2335.
- 14Joozdani MZ, Amirhosseini MK, Abdolali A. Wideband radar cross-section reduction of patch array antenna with miniaturised hexagonal loop frequency selective surface. Electron Lett. 2016; 52(9): 767-768.
- 15Baskey HB, Johari E, Akhtar MJ. Metamaterial structure integrated with a dielectric absorber for wideband reduction of antennas radar cross section. IEEE Trans Electromagn Compat. 2017; 59(4): 1060-1069.
- 16Yang P, Yan F, Yang F, Dong T. Microstrip phased-array in-band RCS reduction with a random element rotation technique. IEEE Trans Antennas Propag. 2016; 64(6): 2513-2518.
- 17Liu T, Cao X, Gao J, Zheng Q, Li W, Yang H. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Trans Antennas Propag. 2013; 61(3): 1479-1484.
- 18Jang H-K, Lee W-J, Kim C-G. Design and fabrication of a microstrip patch antenna with a low radar cross section in the X-band. Smart Mater Struct. 2010; 20(1):015007.
- 19Zhao Y, Gao J, Cao X, et al. In-band RCS reduction of waveguide slot array using metasurface bars. IEEE Trans Antennas Propag. 2017; 65(2): 943-947.
- 20Liu Y, Wang H, Li K, Gong S. RCS reduction of a patch array antenna based on microstrip resonators. IEEE Antennas Wirel Propag Lett. 2015; 14: 4-7.
- 21Liu SJZ, Ma H, Zhang X-Y, Xing B. A novel dual-passband net-shaped FSS structure used for MIMO antennas. Progr Electromagn Res C. 2019; 90: 29-39.
- 22Thummaluru SR, Chaudhary RK. Reducing the RCS of MIMO antenna using angularly stable FSS. Paper presented at: 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC); March 9-15, 2019; New Delhi, India; 2019:1-4.
- 23Ge Y, Zhao Y, Chen J. Wideband RCS reduction and gain enhancement for a patch antenna with broadband AMC structure. Radioengineering. 2019; 27: 45-52.
- 24Saeed Ur R, Cao Q, Muhammad Rizwan A, Faisal A, Yi W. Multifunctional polarization converting metasurface and its application to reduce the RCS of an isolated MIMO antenna. J Phys D Appl Phys. 2020.
- 25Tripathi S, Mohan A, Yadav S. A compact Koch fractal UWB MIMO antenna with WLAN band-rejection. IEEE Antennas Wirel Propag Lett. 2015; 14: 1565-1568.
- 26Muzaffar K, Magray MI. Compact four element dual band notched orthogonally placed UWB antennas for wireless MIMO applications. Paper presented at: IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC); September 9-13, 2019; Granada, Spain; 2019:285-287.
- 27Toktas A, Akdagli A. Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications. IET Microw Antennas Propag. 2015; 9(8): 822-829.
- 28Yu K, Li Y, Liu X. Mutual coupling reduction of a MIMO antenna array using 3-D novel meta-material structures. Appl Comput Electromagn Soc J. 2018; 33.
- 29Akbari M, Ali MM, Farahani M, Sebak AR, Denidni T. Spatially mutual coupling reduction between CP-MIMO antennas using FSS superstrate. Electron Lett. 2017; 53(8): 516-518.
- 30Zhao X, Riaz S, Geng S. A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications. IEEE Access. 2019; 7: 46739-46747.
- 31Sharawi MS. Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]. IEEE Antennas Propag Mag. 2017; 59(2): 162-170.
- 32Mardani H, Ghobadi C, Nourinia J. A simple compact monopole antenna with variable single- and double-filtering function for UWB applications. IEEE Antennas Wirel Propag Lett. 2010; 9: 1076-1079.
- 33Balanis CA. Antenna Theory: Analysis and Design. 3rd ed. (With CD) Wiley India Pvt. Ltd; 2009.
- 34James JR, Hall PS, Wood C. Microstrip Antenna: Theory and Design. Peregrinus; 1986.
- 35Malviya L, Kartikeyan MV, Panigrahi RK. Offset planar MIMO antenna for omnidirectional radiation patterns. Int J RF Microw Comput-Aided Eng. 2018; 28(6):e21274.
- 36Farahani M, Mohammad-Ali-Nezhad S. A novel UWB printed monopole MIMO antenna with non-uniform transmission line using nonlinear model predictive. Eng Sci Technol Int J. 2020; 23.
- 37Choukiker YK, Sharma SK, Behera SK. Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Trans Antennas Propag. 2014; 62(3): 1483-1488.
- 38Gangwar D, Sharma A, Kanaujia BK, Singh SP, Lay-Ekuakille A. Characterization and performance measurement of low RCS wideband circularly polarized MIMO antenna for microwave sensing applications. IEEE Trans Instrum Meas. 2019: 1-1.
- 39Wang L, Du Z, Yang H, et al. Compact UWB MIMO antenna with high isolation using fence-type decoupling structure. IEEE Antennas Wirel Propag Lett. 2019; 18(8): 1641-1645.
- 40Banerjee J, Karmakar A, Ghatak R, Poddar DR. Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic. J Electromagn Waves Appl. 2017; 31(15): 1550-1565.
- 41Mathur R, Dwari S. Compact planar reconfigurable UWB-MIMO antenna with on-demand worldwide interoperability for microwave access/wireless local area network rejection. IET Microw Antennas Propag. 2019; 13(10): 1684-1689.
- 42Nie LY, Lin XQ, Yang ZQ, Zhang J, Wang B. Structure-shared planar UWB MIMO antenna with high isolation for mobile platform. IEEE Trans Antennas Propag. 2019; 67(4): 2735-2738.
- 43Biswas AK, Chakraborty U. Compact wearable MIMO antenna with improved port isolation for ultra-wideband applications. IET Microw Antennas Propag. 2019; 13(4): 498-504.