An algorithm for the determination of graphs associated to fold maps between closed surfaces
Corresponding Author
Pantaleón D. Romero
ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias, Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
Correspondence
Pantaleón D. Romero, Departamento de Matemáticas, Física y Ciencias, Tecnológicas, Universidad Cardenal Herrera-CEU, C/ San Bartolomé, 55, 46115 Alfara del Patriarca. Spain.
Email: [email protected]
Communicated by: J.R. Torregrosa
Search for more papers by this authorJéferson R. P. Coêlho
Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
Search for more papers by this authorCatarina Mendes de Jesus
Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
Search for more papers by this authorCorresponding Author
Pantaleón D. Romero
ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias, Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
Correspondence
Pantaleón D. Romero, Departamento de Matemáticas, Física y Ciencias, Tecnológicas, Universidad Cardenal Herrera-CEU, C/ San Bartolomé, 55, 46115 Alfara del Patriarca. Spain.
Email: [email protected]
Communicated by: J.R. Torregrosa
Search for more papers by this authorJéferson R. P. Coêlho
Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
Search for more papers by this authorCatarina Mendes de Jesus
Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
Search for more papers by this authorAbstract
The aim of this paper is to introduce a computational tool that checks theoretical conditions in order to determine whether a weighted graph, as a topological invariant of stable maps, can be associated to stable maps without cusps (ie, fold maps) from closed surfaces to the projective plan.
REFERENCES
- 1Damon J, Giblin P, Haslinger G. Local Features in Natural Images via Singularity Theory. Switzerland:Springer; 2016. https://doi.org/10.1007/978-3-319-41471-3
10.1007/978-3-319-41471-3 Google Scholar
- 2Marr D, Hildreth E. Theory of edge detection. Proc Royal Soc London, B. 1980; 207: 187-217. https://doi.org/10.1098/rspb.1980.0020
- 3Bellettini G, Beorchia V, Paolini M, Pasquarelli F. Shape Reconstruction from Apparent Contours. London:Springer; 2015. https://doi.org/10.1007/978-3-662
10.1007/978-3-662-45191-5 Google Scholar
- 4Golubitsky M, Guillemin V. Stable Mappings and Their Singularities. Berlin:Springer Verlag; 1976. https://doi.org/10.1007/978-1-4615-7904-5
- 5Whitney H. On Singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann Math. 1955; 62: 374-410.https://doi.org/10.1007/978146122972827
- 6Hacon D, Mendes de Jesus C, Romero Fuster MC. Topological invariants of stable maps from a surface to the plane from a global viewpoint. Real and Complex Singularities. New York:Informa UK Limited; 2003: 227–236. https://doi.org/10.1201/9780203912089.ch10
10.1201/9780203912089-10 Google Scholar
- 7Hacon D, Mendes de Jesus C, Romero Fuster MC. Fold maps from the sphere to the plane. Experimental Maths. 2006; 15: 491-497.https://doi.org/10.1080/10586458.2006.10128973
- 8Hacon D, Mendes de Jesus C, Romero Fuster MC. Stable maps from surfaces to the plane with prescribed branching data. Topology and Its Appl. 2007; 154(1): 166-175. https://doi.org/10.1016/j.topol.2006.04.005
- 9Mendes de Jesus C, Romero Fuster MC. Graphs of stable maps between closed surfaces. RIMS Kôkyûroku Bessatsu. 2016; B55: 147-159.
- 10Mendes de Jesus C, Romero Fuster MC. Graphs of stable maps from closed surfaces to the projective plane. Topology and Its Appl. 2018; 234: 298-310. https://doi.org/10.1016/j.topol.2017.11.013
- 11Mendes de Jesus C, Romero Fuster MC. Graphs of fold maps from closed surfaces to the projective plane. Topology and Its Appl. 2019; 234: 298–310.
- 12Gurobi Optimization LLC. Gurobi Optimizer Reference Manual. http://www.gurobi.com; 2018.
- 13Bertsimas D, Tsitsiklis J. Introduction to Linear Optimization. Belmont (Mass.):Anthena Scientific; 1997.
Special Issue:Mathematical Modelling in Engineering & Human Behaviour 2018
30 September 2020
Pages 8177-8191