Fractional solution of the catenary curve
Corresponding Author
Leonardo Martínez–Jiménez
Departamento de Estudios Multidisciplinarios, División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Correspondence
Leonardo Martínez-Jiménez, Departamento de Estudios Multidisciplinarios, Divisíon de ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Guanajuato, Mexico.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorJorge Mario Cruz–Duarte
División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Search for more papers by this authorJ. Juan Rosales–García
División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Search for more papers by this authorCorresponding Author
Leonardo Martínez–Jiménez
Departamento de Estudios Multidisciplinarios, División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Correspondence
Leonardo Martínez-Jiménez, Departamento de Estudios Multidisciplinarios, Divisíon de ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Guanajuato, Mexico.
Email: [email protected]
Communicated by: D. Zeidan
Search for more papers by this authorJorge Mario Cruz–Duarte
División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Search for more papers by this authorJ. Juan Rosales–García
División de ingenierías, Campus Irapuato–Salamanca, Universidad de Guanajuato, Guanajuato, México
Search for more papers by this authorAbstract
The catenary curve has been used in a vast number of practical applications, and several mathematical models have been studied to approximate its behavior. This work, motivated by the success of fractional calculus, proposes a fractional model for the catenary curve, using the Caputo-Fabrizio (CF) definition. It was analyzed how the fractional derivative order and the fractional initial condition directly affect the hanging cable shape. It was noticed that the proposed model provides the possibility of describing new scenarios and revealing new information about the system. Therefore, this work gives rise to a new family of curves that can be used in any practical problem involving catenaries, varying at most two parameters.
REFERENCES
- 1Santiago H. Structural design in the work of Gaudí. Architect Sci Rev. 2006; 49(4): 324-339.
10.3763/asre.2006.4943 Google Scholar
- 2Tomlow J. Gaudí's reluctant attitude towards the inverted catenary. In: Proceedings of the Institution of Civil Engineers - Engineering History and Heritage, Vol. 164. London, UK; 2011: 219-233.
- 3Byfield M, Paramasivam S. Catenary action in steel-framed buildings. Proc Inst Civ Eng Struct Build. 2007; 160(5): 247-257.
- 4Chang S-P, Park J-I, Lee K-C. Nonlinear dynamic analysis of spatially suspended elastic catenary cable with finite element method. KSCE J Civ Eng. 2008; 12(2): 121-128.
- 5Goldstein G, Kapadia YY, Lin TY, Zhivago P. The catenary curve: a guide to mandibular arch form. iMedPub J. 2015; 1: 1-4. https://doi.org/10.21767/2471-3082.100001
- 6MacConaill MA, Scher EA. The ideal form of human dental arcade, with some prosthetic applications. Dent Record. 1944; 69: 285-302.
- 7Scott JH. The shape of the dental arches. J Dent Res. 1957; 36: 996-1003.
- 8Currier JH. Computerized geometric analysis of human dental arch form. Am J Orthod. 1969; 56: 164-179.
- 9McClendon RT. Directional drilling using the catenary method. In: Society of Petroleum Engineers; 1985; New Orleans, Louisiana.
- 10Pu M, Li X, Xiaoliang M, et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv. 2015; 1(9): e1500396-e1500396.
- 11Lee J, Chen S, Reece GP, Crosby MA, Beahm EK, Markey MK. A novel quantitative measure of breast curvature based on catenary. IEEE Trans Biomed Eng. 2012; 59(4): 1115-1124.
- 12Galilei G. Discorsi E Dimostrazioni Matematiche, Intorno A Due Buovo Scienze, 1638. London, UK: Macmillan; 1914.
- 13Chatterjee N, Nita BG. The hanging cable problem for practical applications. Atlantic Electron J Math. 2010; 4(1): 70-77.
- 14Dierkes U, Hildebrandt S, Sauvigny F. Minimal Surfaces: A Series of Comprehensive Studies in Mathematics. Berlin Heidelberg: Springer-Verlag; 2010.
- 15Cañete M. Método De Aproximación Catenaria Para La Obtención De Densidades De Fuerza En Estructuras Tensadas Y Antifuniculares. PhD Thesis: Universidad de Granada; 2016.
- 16Monje CA, Chen YQ, Vinagre BM, Xue D, Feliu V. Fractional-Order Systems and Controls, Series: Advances in Industrial Control. Berlin: Springer; 2010.
- 17Baleanu D, Günvenc ZB, Tenreiro Machado JA. New Trends in Nanotechnology and Fractional Calculus Applications. Berlin: Springer; 2010.
10.1007/978-90-481-3293-5 Google Scholar
- 18Abel NH. Résolution D'un Probléme De Mécanique. Gröndah. Christiana: Oeuvres Complétes, tomo premier; 1839a.
- 19Caputo M, Mainardi F. A new dissipation model based on memory mechanism. Pure Appl Geophys. 1971; 91: 134-147.
- 20Wyss W. Fractional diffusion equation. J Math Phys. 1986; 27: 2782-2785.
- 21Westerlund S. Capacitor theory. IEEE Trans Dielectr Electr Insul. 1994; 1(5): 826-839.
- 22Hermann R. Fractional Calculus. New Jersey: World Scientific; 2011.
10.1142/8072 Google Scholar
- 23Capelas de Oliveira E, Tenreiro Machado JA. A review of definitions for fractional derivatives and integrals. Math Probl Eng. 2014; 2014: 238459.
- 24Oldham KB, Spanier J. The Fractional Calculus. Mathematics in science and engineering, Vol. 111. New York, London; Academic Press: 1974.
- 25Uchaikin V. Fractional Derivatives for Physicists and Engineers. Berlin: Springer; 2013.
10.1007/978-3-642-33911-0 Google Scholar
- 26Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives: Theory and Applications. New York: Gordon and Breach; 1993.
- 27Podlubny I. Fractional Differential Equations. New York: Academic Press; 1999.
- 28Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015; 1: 73-85.
- 29Atangana A, Baleanu D. New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer model. Therm Sci. 2016; 20(2): 763-769.
- 30Hristov J. Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey's kernel and analytical solutions. Therm Sci. 2017; 21(2): 827-839.
- 31Cruz-Duarte JM, Rosales-García J, Correa-Cely CR, García-Perez A, Avina-Cervantes JG. Closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun Nonlinear Sci Numer Simulat. 2018; 61: 138-148.
- 32Ortigueira MD, Tenreiro Machado J. A critical analysis of the Caputo-Fabrizio operator. Commun Nonlinear Sci Numer Simulat. 2018; 59: 608-611.
- 33Kochubei AN. General fractional calculus, evolution equations, and renewal processes. Integr Equ Oper Theory. 2011; 71(4): 583-600.
- 34Hristov J. Derivatives with non-singular kernels from the definition and beyond: appraising analysis with emphasis on diffusion models. In: Frontiers in Fractional Calculus, Vol. 1; 2017: 270-342.
- 35Losada J, Nieto JJ. Properties of a new fractional derivative without singular kernel. Prog Fract Differ Appl. 2015; 20(2): 87-92.
- 36Atangana A, Nieto JJ. Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv Mech Eng. 2015; 7(10): 1-7.