A summation-integral type modification of Szász–Mirakjan operators
Corresponding Author
Vishnu Narayan Mishra
Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, 395 007 Gujarat, India
L. 1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road, Faizabad, 224 001 Uttar Pradesh, India
Correspondence to: Vishnu Narayan Mishra, Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, Gujarat 395 007, India.
E-mail: [email protected], [email protected]
Search for more papers by this authorR. B. Gandhi
Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, 395 007 Gujarat, India
Department of Mathematics, BVM Engineering College, Vallabh Vidyanagar, 388 120 Gujarat, India
Search for more papers by this authorCorresponding Author
Vishnu Narayan Mishra
Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, 395 007 Gujarat, India
L. 1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road, Faizabad, 224 001 Uttar Pradesh, India
Correspondence to: Vishnu Narayan Mishra, Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, Gujarat 395 007, India.
E-mail: [email protected], [email protected]
Search for more papers by this authorR. B. Gandhi
Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology, Ichchanath Mahadev - Dumas Road, Surat, 395 007 Gujarat, India
Department of Mathematics, BVM Engineering College, Vallabh Vidyanagar, 388 120 Gujarat, India
Search for more papers by this authorAbstract
In this paper, we introduced a summation-integral type modification of Szász–Mirakjan operators. Calculation of moments, density in some space, a direct result and a Voronvskaja-type result, are obtained. Copyright © 2016 John Wiley & Sons, Ltd.
References
- 1Mirakjan GM. Approximation of continuous functions with the aid of polynomials....Doklady Akademii Nauk SSSR 1941; 31: 201–205.
- 2Szász O. Generalization of S.Bernstein's polynomials to the infinite interval. Journal of Research of the National Bureau of Standards 1950; 45: 239–245.
- 3Butzer PL. On the extension of Bernstein polynomials to the infinite interval. Proceedings of the American Mathematical Society, Vol. 5, 1954; 547–553.
- 4Acar T. Asymptotic formulas for generalized Szász–Mirakyan operators. Applied Mathematics and Computation 2015; 263: 223–239.
- 5Acar T, Mishra LN, Mishra VN. Simultaneous approximation for generalized Srivastava-Gupta operator. Journal of Function Spaces 2015; 2015: Article ID 936308, 11 pages. 10.1155/2015/936308.
- 6Acar T, Ulusoy G. Approximation properties of generalized Szász–Durrmeyer operators. Periodica Mathematica Hungarica 2016; 72(1): 64–75.
- 7Becker M. Global approximation theorems for Szász–Mirakjan and Baskakov operators in polynomial weight spaces. Indiana University Mathematics Journal 1978; 27: 127–142.
- 8Becker M, Kucharski D, Nessel RJ. Global approximation theorems for Szász–Mirakjan and Baskakov operators in exponential weight spaces. (Proc. Conf. Oberwolfach), Linear Spaces and Approximation, Birkhãuser Verlag, Basel, 1977.
- 9Della Vecchia B, Mastroianni G, Szabados J. Weighted approximation of functions by Szász–Mirakyan-type operators. Acta Mathematica Hungarica 2006; 111: 325–345.
- 10Della Vecchia B, Mastroianni G, Szabados J. A weighted generalization of Szász–Mirakyan and Butzer operators. Mediterranean Journal of Mathematics 2015; 12: 433–454. 10.1007/s0009-014-0413-2.
- 11Gairola AR, Deepmala Mishra LN. Rate of approximation by finite iterates of q-Durrmeyer operators. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2016. DOI: 10.1007/s40010-016-0267-z, in press.
- 12Hermann T. On Szász–Mirakjan operators. Acta Mathematica Hungarica 1978; 32(1-2): 163–173.
- 13Mishra VN, Gandhi RB. Simultaneous approximation by Szász–Mirakjan–Stancu–Durrmeyer type operators. Periodica Mathematica Hungarica. accepted on January 18, 2016, in press.
- 14Mishra VN, Gandhi RB, Nasaireh F. Simultaneous approximation by Szász-Mirakjan–Durrmeyer-type operators. Bollettino dell'Unione Matematica Italiana 2015; 8(4): 297–305.
- 15Mishra VN, Khatri K, Mishra LN. Deepmala; Inverse result in simultaneous approximation by Baskakov–Durrmeyer–Stancu operators. Journal of Inequalities and Applications 2013; 2013: 586.
- 16Mishra VN, Khan HH, Khatri K, Mishra LN. Hypergeometric representation for Baskakov–Durrmeyer–Stancu type operators. Bulletin of Mathematical Analysis and Applications 2013; 5(3): 18–26.
- 17Mishra VN, Khatri K, Mishra LN. On simultaneous approximation for Baskakov–Durrmeyer–Stancu type operators. Journal of Ultra Scientist of Physical Sciences 2012; 24(3): 567–577.
- 18Mishra VN, Khatri K, Mishra LN. Some approximation properties of q-Baskakov–Beta–Stancu type operators. Journal of Calculus of Variations; 2013. Article ID 814824.
- 19Mishra VN, Khatri K, Mishra LN. Statistical approximation by Kantorovich type discrete q−beta operators. Advances in Difference Equations 2013; 2013: 345.
- 20Totik V. Uniform approximation by Szász–Mirakjan type operators. Acta Mathematica Hungarica 1983; 41: 291–307.
- 21Ulusoy G, Acar T. q-Voronovskaya type theorems for q-Baskakov operators. Mathematical Methods in the Applied Sciences. 10.1002/mma.3784.
- 22Wafi A, Rao N. Deepmala; Approximation properties by generalized-Baskakov–Kantorovich–Stancu type operators. Applied Mathematics & Information Sciences Letters 2016; 4(3).
10.18576/amisl/040303 Google Scholar
- 23Zhou D. Weighted approximation by Szász–Mirakjan operators. Journal of Approximation Theory 1994; 76: 393–402.
- 24Mazhar SM, Totik V. Approximation by modified Szász operators. Acta Scientiarum Mathematicarum 1985; 49: 257–269.
- 25Stancu DD. Asupra unei generaližari a polinoamelor lui Bernstein. Studia Universi-tatis Babes-Bolyai 1969; 14(2): 31–45.
- 26Altomare P, Campiti M. Korovkin-Type Approximation Theory and its Applications. Walter de Gruyter: Berlin - New York, 1994.
10.1515/9783110884586 Google Scholar