The thioredoxin system—From science to clinic
Corresponding Author
Stephan Gromer
Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.Search for more papers by this authorSabine Urig
Interdisziplinäres Forschungszentrum, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorKatja Becker
Interdisziplinäres Forschungszentrum, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorCorresponding Author
Stephan Gromer
Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.Search for more papers by this authorSabine Urig
Interdisziplinäres Forschungszentrum, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorKatja Becker
Interdisziplinäres Forschungszentrum, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
Search for more papers by this authorAbstract
The thioredoxin system—formed by thioredoxin reductase and its characteristic substrate thioredoxin—is an important constituent of the intracellular redox milieu. Interactions with many different metabolic pathways such as DNA-synthesis, selenium metabolism, and the antioxidative network as well as significant species differences render this system an attractive target for chemotherapeutic approaches in many fields of medicine—ranging from infectious diseases to cancer therapy. In this review we will present and evaluate the preclinical and clinical results available today. Current trends in drug development are emphasized. © 2003 Wiley Periodicals, Inc. Med Res Rev, 24, No. 1, 40–89, 2004
REFERENCES
- 1 Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30: 1191–1212.
- 2 Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997; 15: 351–369.
- 3 A Holmgren, ES Arnér, F Aslund, M Björnstedt, L Zhong, H Nakamura, D Nikitovic, editors. Redox regulation by the thioredoxin and glutaredoxin system. New York: Marcel Dekker, Inc.; 1998. pp 229–246.
- 4 Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267: 6102–6109.
- 5 Williams CHJ. Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—A family of flavoenzyme transhydrogenases. In: F Müller, editor. Chemistry and biochemistry of flavoenzymes. Volume 3, Cemistry and biochemistry of flavoenzymes. Boca Raton: CRC Press; 1992. pp 121–211.
- 6 Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides VI. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli. J Biol Chem 1964; 239: 3436–3444.
- 7 Moore EC. A thioredoxin-thioredoxin reductase system from rat tumor. Biochem Biophys Res Commun 1967; 29: 264–268.
- 8 Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells: Purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 1996; 93: 1006–1011.
- 9 Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 1996; 93: 6146–6151.
- 10 Rahlfs S, Schirmer RH, Becker K. The thioredoxin system of Plasmodium falciparum and other parasites. Cell Mol Life Sci 2002; 59: 1024–1041.
- 11 Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 2001; 30: 421–455.
- 12 Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 2000; 29: 312–322.
- 13 Mustacich D, Powis G. Thioredoxin reductase. Biochem J 2000; 346(Pt 1): 1–8.
- 14 Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000; 2: 811–820.
- 15 Holmgren A. Redox regulation by thioredoxin and thioredoxin reductase. Biofactors 2000; 11: 63–64.
- 16 Williams CH, Jr. Thioredoxin-thioredoxin reductase—A system that has come of age. Eur J Biochem 2000; 267: 6101.
- 17 Williams CH, Arscott LD, Müller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 2000; 267: 6110–6117.
- 18 Thelander L. Thioredoxin reductase. Characterization of a homogenous preparation from Escherichia coli B. J Biol Chem 1967; 242: 852–859.
- 19 Zanetti G, Williams CH, Jr. Characterization of the active center of thioredoxin reductase. J Biol Chem 1967; 242: 5232–5236.
- 20 Williams CH, Jr., Zanetti G, Arscott LD, McAllister JK. Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and thioredoxin. J Biol Chem 1967; 242: 5226–5231.
- 21 Thelander L. Studies on thioredoxin reductase from Escherichia coli B. The relation of structure and function. Eur J Biochem 1968; 4: 407–419.
- 22 Thelander L, Baldesten A. Amino acid composition of thioredoxin reductase from Escherichia coli B. Eur J Biochem 1968; 4: 420–422.
- 23 Thelander L. The amino acid sequence of a peptide containing the active center disulfide of thioredoxin reductase from Escherichia coli. J Biol Chem 1970; 245: 6026–6029.
- 24 Ronchi S, Williams CH, Jr. The isolation and primary structure of a peptide containing the oxidation–reduction active cystine of Escherichia coli thioredoxin reductase. J Biol Chem 1972; 247: 2083–2086.
- 25 Berglund O, Holmgren A. Thioredoxin reductase-mediated hydrogen transfer from Escherichia coli thioredoxin-(SH)2 to phage T4 thioredoxin-S2. J Biol Chem 1975; 250: 2778–2782.
- 26 Lennon BW, Williams CH, Jr., Ludwig ML. Twists in catalysis: Alternating conformations of Escherichia coli thioredoxin reductase. Science 2000; 289: 1190–1194.
- 27 Williams CH, Jr. Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J 1995; 9: 1267–1276.
- 28 Waksman G, Krishna TS, Williams CH, Jr., Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 Å resolution. Implications for a large conformational change during catalysis. J Mol Biol 1994; 236: 800–816.
- 29 Tsang ML, Weatherbee JA. Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells. Proc Natl Acad Sci USA 1981; 78: 7478–7482.
- 30 Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: Purification and characterization. Biochemistry 1982; 21: 6628–6633.
- 31 Gasdaska PY, Gasdaska JR, Cochran S, Powis G. Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 1995; 373: 5–9.
- 32 Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH, Jr. The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci USA 1997; 94: 3621–3626.
- 33 Holmgren A, Lyckeborg C. Enzymatic reduction of alloxan by thioredoxin and NADPH-thioredoxin reductase. Proc Natl Acad Sci USA 1980; 77: 5149–5152.
- 34 Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989; 264: 13963–13966.
- 35 Lundström J, Holmgren A. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity. J Biol Chem 1990; 265: 9114–9120.
- 36 Decottignies P, Schmitter JM, Dutka S, Jacquot JP, Miginiac-Maslow M. Characterization and primary structure of a second thioredoxin from the green alga, Chlamydomonas reinhardtii. Eur J Biochem 1991; 198: 505–512.
- 37 Björnstedt M, Kumar S, Holmgren A. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J Biol Chem 1992; 267: 8030–8034.
- 38 Nikitovic D, Holmgren A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 1996; 271: 19180–19185.
- 39 Gromer S, Schirmer RH, Becker K. News and views on thioredoxin reductases. Redox Report 1999; 4: 221–228.
- 40 Florencio FJ, Yee BC, Johnson TC, Buchanan BB. An NADP/thioredoxin system in leaves: Purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 1988; 266: 496–507.
- 41 Van Langendonckt A, Vanden Driessche T. Isolation and characterization of different forms of thioredoxins from the green alga Acetabularia mediterranea: Identification of an NADP/thioredoxin system in the extrachloroplastic fraction. Arch Biochem Biophys 1992; 292: 156–164.
- 42 Speranza ML, Ronchi S, Minchiotti L. Purification and characterization of yeast thioredoxin reductase. Biochim Biophys Acta 1973; 327: 274–281.
- 43 Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, et al. Life with 6,000 genes. Science 1996; 274: 546, 563–567.
- 44 Hirt RP, Müller S, Embley TM, Coombs GH. The diversity and evolution of thioredoxin reductase: New perspectives. Trends Parasitol 2002; 18: 302–308.
- 45 Novoselov SV, Gladyshev VN. Non-animal origin of animal thioredoxin reductases: Implications for selenocysteine evolution and evolution of protein function through carboxy-terminal extensions. Protein Sci 2003; 12: 372–378.
- 46 Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL, Gladyshev VN. Selenoproteins and selenocysteine insertion system in the model plant cell system, Chlamydomonas reinhardtii. EMBO J 2002; 21: 3681–3693.
- 47 Gromer S, Schirmer RH, Becker K. The 58 kDa mouse selenoprotein is a BCNU-sensitive thioredoxin reductase. FEBS Lett 1997; 412: 318–320.
- 48 Zhong L, Arnér ES, Ljung J, Åslund F, Holmgren A. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. J Biol Chem 1998; 273: 8581–8591.
- 49 Arnér ESJ, Sarioglu H, Lottspeich F, Holmgren A, Böck A. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB, and SelC genes. J Mol Biol 1999; 292: 1003–1016.
- 50 Schulz GE, Schirmer RH. Principles of protein structure. In: CR Cantor, editor. Heidelberg: Springer; 1978. 314 p.
- 51 Wang X, Connor M, Smith R, Maciejewski MW, Howden ME, Nicholson GM, Christie MJ, King GF. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat Struct Biol 2000; 7: 505–513.
- 52 Kaim W, Schwederski B. Bioanorganische Chemie. Zur Funktion chemischer Elemente in Lebensprozessen. Stuttgart: Teubner Verlag; 1995. 460 p.
- 53 Zhong L, Holmgren A. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem 2000; 275: 18121–18128.
- 54 Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG. Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 2000; 97: 2521–2526.
- 55 Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 2002; 415: 673–679.
- 56 Müller S, Gilberger TW, Färber PM, Becker K, Schirmer RH, Walter RD. Recombinant putative glutathione reductase of Plasmodium falciparum exhibits thioredoxin reductase activity. Mol Biochem Parasitol 1996; 80: 215–219.
- 57 Gromer S, Arscott LD, Williams CH, Jr., Schirmer RH, Becker K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J Biol Chem 1998; 273: 20096–20101.
- 58 Kanzok SM, Schirmer RH, Türbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 2000; 275: 40180–40186.
- 59 Gilberger TW, Bergmann B, Walter RD, Müller S. The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett 1998; 425: 407–410.
- 60 Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Müller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 2001; 291: 643–646.
- 61 Holmgren A. The function of thioredoxin and glutathione in deoxyribonucleic acid synthesis. Biochem Soc Trans 1977; 5: 611–612.
- 62 Schurmann P, Maeda K, Tsugita A. Isomers in thioredoxins of spinach chloroplasts. Eur J Biochem 1981; 116: 37–45.
- 63 Bauer H, Kanzok SM, Schirmer RH. Thioredoxin-2 but not thioredoxin-1 is a substrate of thioredoxin peroxidase-1 from Drosophila melanogaster: Isolation and characterization of a second thioredoxin in D. melanogaster and evidence for distinct biological functions of Trx-1 and Trx-2. J Biol Chem 2002; 277: 17457–17463.
- 64 Holmgren A. Thioredoxin structure and mechanism: Conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 1995; 3: 239–243.
- 65 Gleason FK, Holmgren A. Thioredoxin and related proteins in procaryotes. FEMS Microbiol Rev 1988; 4: 271–297.
- 66 Miranda-Vizuete A, Damdimopoulos AE, Gustafsson J, Spyrou G. Cloning, expression, and characterization of a novel Escherichia coli thioredoxin. J Biol Chem 1997; 272: 30841–30847.
- 67 Pedone EM, Bartolucci S, Rossi M, Saviano M. Computational analysis of the thermal stability in thioredoxins: A molecular dynamics approach. J Biomol Struct Dyn 1998; 16: 437–446.
- 68 Maier CS, Schimerlik MI, Deinzer ML. Thermal denaturation of Escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: Monitoring a two-state protein unfolding transition. Biochemistry 1999; 38: 1136–1143.
- 69 Tonissen K, Wells J, Cock I, Perkins A, Orozco C, Clarke F. Site-directed mutagenesis of human thioredoxin. Identification of cysteine 74 as critical to its function in the “early pregnancy factor” system. J Biol Chem 1993; 268: 22485–22489.
- 70 Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated human thioredoxins: Evidence for a regulatory homodimer. Structure 1996; 4: 735–751.
- 71 Bodenstein J, Follmann H. Characterization of two thioredoxins in pig heart including a new mitochondrial protein. Z Naturforsch 1991; 46: 270–279.
- 72 Gasdaska PY, Oblong JE, Cotgreave IA, Powis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): Thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta 1994; 1218: 292–296.
- 73 Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H,et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 1989; 8: 757–764.
- 74 Clarke FM, Orozco C, Perkins AV, Cock I, Tonissen KF, Robins AJ, Wells JR. Identification of molecules involved in the ‘early pregnancy factor’ phenomenon. J Reprod Fertil 1991; 93: 525–539.
- 75 Mitsui A, Hirakawa T. Adult T-cell leukemia derived factor/human thioredoxin (ADF/hTx). Seikagaku 1990; 62: 1047–1051.
- 76 Yodoi J, Tagaya Y, Okada M, Taniguchi Y, Hirata M, Naramura M, Maeda M. Interleukin-2 receptor-inducing factor(s) in adult T cell leukemia. Acta Haematol 1987; 78: 56–63.
- 77 Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 1996; 178: 179–185.
- 78 Nonn L, Williams RR, Erickson RP, Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 2003; 23: 916–922.
- 79 Pekkari K, Avila-Carino J, Bengtsson A, Gurunath R, Scheynius A, Holmgren A. Truncated thioredoxin (Trx80) induces production of interleukin-12 and enhances CD14 expression in human monocytes. Blood 2001; 97: 3184–3190.
- 80 Jiménez A, Johansson C, Ljung J, Sagemark J, Berndt KD, Ren B, Tibbelin G, Ladenstein R, Kieselbach T, Holmgren A,et al. Human spermatid-specific thioredoxin-1 (Sptrx-1) is a two-domain protein with oxidizing activity. FEBS Lett 2002; 530: 79–84.
- 81 Jiménez A, Oko R, Gustafsson JA, Spyrou G, Pelto-Huikko M, Miranda-Vizuete A. Cloning, expression and characterization of mouse spermatid specific thioredoxin-1 gene and protein. Mol Hum Reprod 2002; 8: 710–718.
- 82 Lundström-Ljung J, Birnbach U, Rupp K, Soling HD, Holmgren A. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: Comparison with protein disulfide isomerase. FEBS Lett 1995; 357: 305–308.
- 83 Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, Sitia R. ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. Embo J 2002; 21: 835–844.
- 84 Matsuo Y, Akiyama N, Nakamura H, Yodoi J, Noda M, Kizaka-Kondoh S. Identification of a novel thioredoxin-related transmembrane protein. J Biol Chem 2001; 276: 10032–10038.
- 85 Hosoda A, Kimata Y, Tsuru A, Kohno K. JPDI, a novel endoplasmic reticulum-resident protein containing both a BiP-interacting J-domain and thioredoxin-like motifs. J Biol Chem 2003; 278: 2669–2676.
- 86 Miranda-Vizuete A, Damdimopoulos AE, Spyrou G. The mitochondrial thioredoxin system. Antioxid Redox Signal 2000; 2: 801–810.
- 87 Gladyshev VN, Hatfield DL. Selenocysteine-containing proteins in mammals. J Biomed Sci 1999; 6: 151–160.
- 88 Davis W, Jr., Ronai Z, Tew KD. Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 2001; 296: 1–6.
- 89 Stadtman ER. Protein oxidation and aging. Science 1992; 257: 1220–1224.
- 90 Müller S, Riedel HD, Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 1997; 90: 4973–4978.
- 91 Hofmann B, Hecht HJ, Flohé L. Peroxiredoxins. Biol Chem 2002; 383: 347–364.
- 92 Flohé L. Glutathione peroxidase. Basic Life Sci 1988; 49: 663–668.
- 93 Muller EG. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell 1996; 7: 1805–1813.
- 94 Holmgren A. Thioredoxin. Annu Rev Biochem 1985; 54: 237–271.
- 95 Missirlis F, Ulschmid JK, Hirosawa-Takamori M, Grönke S, Schäfer U, Becker K, Phillips JP, Jäckle H. Mitochondrial and cytoplasmic thioredoxin reductase variants encoded by a single Drosophila gene are both essential for viability. J Biol Chem 2002; 277: 11521–11526.
- 96 Missirlis F, Phillips JP, Jäckle H. Cooperative action of antioxidant defense systems in Drosophila. Curr Biol 2001; 11: 1272–1277.
- 97 Windle HJ, Fox A, Ni Eidhin D, Kelleher D. The thioredoxin system of Helicobacter pylori. J Biol Chem 2000; 275: 5081–5089.
- 98 Reckenfelderbäumer N, Lüdemann H, Schmidt H, Steverding D, Krauth-Siegel RL. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. J Biol Chem 2000; 275: 7547–7552.
- 99 Porras P, Pedrajas JR, Martinez-Galisteo E, Padilla CA, Johansson C, Holmgren A, Barcena JA. Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochem Biophys Res Commun 2002; 295: 1046–1051.
- 100 Gromer S, Gross JH. Methylseleninate is a substrate rather than an inhibitor of mammalian thioredoxin reductase. Implications for the antitumor effects of selenium. J Biol Chem 2002; 277: 9701–9706.
- 101 Ehrhart J, Gluck M, Mieyal J, Zeevalk GD. Functional glutaredoxin (thioltransferase) activity in rat brain and liver mitochondria. Parkinsonism Relat Disord 2002; 8: 395–400.
- 102 Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S. Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem 1992; 209: 917–922.
- 103 Burk RF, Hill KE, Awad JA, Morrow JD, Lyons PR. Liver and kidney necrosis in selenium-deficient rats depleted of glutathione. Lab Invest 1995; 72: 723–730.
- 104 Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 1999; 274: 24522–24530.
- 105 Sun QA, Kirnarsky L, Sherman S, Gladyshev VN. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 2001; 98: 3673–3678.
- 106 Alger HM, Williams DL. The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol Biochem Parasitol 2002; 121: 129–139.
- 107 May JM, Mendiratta S, Hill KE, Burk RF. Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 1997; 272: 22607–22610.
- 108 Li X, Cobb CE, Hill KE, Burk RF, May JM. Mitochondrial uptake and recycling of ascorbic acid. Arch Biochem Biophys 2001; 387: 143–153.
- 109 Li X, Qu ZC, May JM. GSH is required to recycle ascorbic acid in cultured liver cell lines. Antioxid Redox Signal 2001; 3: 1089–1097.
- 110 May JM. Ascorbate function and metabolism in the human erythrocyte. Front Biosci 1998; 3: D1–D10.
- 111 Mendiratta S, Qu ZC, May JM. Enzyme-dependent ascorbate recycling in human erythrocytes: Role of thioredoxin reductase. Free Radic Biol Med 1998; 25: 221–228.
- 112 Xia L, Nordman T, Olsson JM, Damdimopoulos A, Bjorkhem-Bergman L, Nalvarte I, Eriksson LC, Arnér ES, Spyrou G, Björnstedt M. The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress. J Biol Chem 2003; 278: 2141–2146.
- 113 Arnér ES, Nordberg J, Holmgren A. Efficient reduction of lipoamide and lipoic acid by mammalian thioredoxin reductase. Biochem Biophys Res Commun 1996; 225: 268–274.
- 114 Cooper CE, Patel RP, Brookes PS, Darley-Usmar VM. Nanotransducers in cellular redox signaling: Modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci 2002; 27: 489–492.
- 115 Adler S, Modrich P. T7-induced DNA polymerase. Requirement for thioredoxin sulf-hydryl groups. J Biol Chem 1983; 258: 6956–6962.
- 116 Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 1994; 2: 853–868.
- 117 Gitler C, Zarmi B, Kalef E, Meller R, Zor U, Goldman R. Calcium-dependent oxidation of thioredoxin during cellular growth initiation. Biochem Biophys Res Commun 2002; 290: 624–628.
- 118 Sun QA, Gladyshev VN. Redox regulation of cell signaling by thioredoxin reductases. Methods Enzymol 2002; 347: 451–461.
- 119 Zheng M, Aslund F, Storz G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 1998; 279: 1718–1721.
- 120 Zhang J, Velsor LW, Patel JM, Postlethwait EM, Block ER. Nitric oxide-induced reduction of lung cell and whole lung thioredoxin expression is regulated by NF-κB. Am J Physiol 1999; 277: L787–L793.
- 121 Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Rad Biol Med 1996; 21: 335–348.
- 122 Schenk H, Klein M, Erdbrugger W, Dröge W, Schulze-Osthoff K. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-κB and AP-1. Proc Natl Acad Sci USA 1994; 91: 1672–1676.
- 123 Schulze-Osthoff K, Schenk H, Droge W. Effects of thioredoxin on activation of transcription factor NF-κB. Methods Enzymol 1995; 252: 253–264.
- 124 Spyrou G, Bjornstedt M, Kumar S, Holmgren A. AP-1 DNA-binding activity is inhibited by selenite and selenodiglutathione. FEBS Lett 1995; 368: 59–63.
- 125 Casso D, Beach D. A mutation in a thioredoxin reductase homolog suppresses p53-induced growth inhibition in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1996; 252: 518–529.
- 126 Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its a subunit. J Biol Chem 1996; 271: 32253–32259.
- 127 Kambe F, Nomura Y, Okamoto T, Seo H. Redox regulation of thyroid-transcription factors, Pax-8 and TTF-1, is involved in their increased DNA-binding activities by thyrotropin in rat thyroid FRTL-5 cells. Mol Endocrinol 1996; 10: 801–812.
- 128 Makino Y, Okamoto K, Yoshikawa N, Aoshima M, Hirota K, Yodoi J, Umesono K, Makino I, Tanaka H. Thioredoxin: A redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest 1996; 98: 2469–2477.
- 129 Nakshatri H, Bhat-Nakshatri P, Currie RA. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem 1996; 271: 28784–28791.
- 130 Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. Faseb J 1996; 10: 709–720.
- 131 Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 1997; 94: 3633–3638.
- 132 Müller JM, Rupec RA, Bäuerle PA. Study of gene regulation by NF-κB and AP-1 in response to reactive oxygen intermediates. Methods 1997; 11: 301–312.
- 133 Huang Y, Domann FE. Redox modulation of AP-2 DNA binding activity in vitro. Biochem Biophys Res Commun 1998; 249: 307–312.
- 134 Pearson GD, Merrill GF. Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem 1998; 273: 5431–5434.
- 135 Aslund F, Beckwith J. Bridge over troubled waters: Sensing stress by disulfide bond formation. Cell 1999; 96: 751–753.
- 136 Hirota K, Murata M, Sachi Y, Nakamura H, Takeuchi J, Mori K, Yodoi J. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-κB. J Biol Chem 1999; 274: 27891–27897.
- 137 Hirota K, Matsui M, Murata M, Takashima Y, Cheng FS, Itoh T, Fukuda K, Yodoi J. Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-κB, AP-1, and CREB activation in HEK293 cells. Biochem Biophys Res Commun 2000; 274: 177–182.
- 138 Wiesel P, Foster LC, Pellacani A, Layne MD, Hsieh CM, Huggins GS, Strauss P, Yet SF, Perrella MA. Thioredoxin facilitates the induction of heme oxygenase-1 in response to inflammatory mediators. J Biol Chem 2000; 275: 24840–24846.
- 139 Rundlöf AK, Carlsten M, Arnér ES. The core promoter of human thioredoxin reductase 1: Cloning, transcriptional activity and Oct-1, Sp1 and Sp3 binding reveal a housekeeping-type promoter for the ARE-regulated gene. J Biol Chem 2001; 24: 24.
- 140 Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002; 109: S81–S96.
- 141 Garg A, Aggarwal BB. Nuclear transcription factor-κB as a target for cancer drug development. Leukemia 2002; 16: 1053–1068.
- 142 Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L. Redox regulation of NF-κB activation. Free Radic Biol Med 1997; 22: 1115–1126.
- 143 Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kB. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem 1993; 268: 11380–11388.
- 144 Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-κB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992; 20: 3821– 3830.
- 145 Takeuchi J, Hirota K, Itoh T, Shinkura R, Kitada K, Yodoi J, Namba T, Fukuda K. Thioredoxin inhibits tumor necrosis factor- or interleukin-1-induced NF-κB activation at a level upstream of NF-κB-inducing kinase. Antioxid Redox Signal 2000; 2: 83–92.
- 146 Hainaut P, Mann K. Zinc binding and redox control of p53 structure and function. Antioxid Redox Signal 2001; 3: 611–623.
- 147 Bargonetti J, Manfredi JJ. Multiple roles of the tumor suppressor p53. Curr Opin Oncol 2002; 14: 86–91.
- 148 Hu J, Ma X, Lindner DJ, Karra S, Hofmann ER, Reddy SP, Kalvakolanu DV. Modulation of p53 dependent gene expression and cell death through thioredoxin–thioredoxin reductase by the interferon–retinoid combination. Oncogene 2001; 20: 4235–4248.
- 149 Ma X, Hu J, Lindner DJ, Kalvakolanu DV. Mutational analysis of human thioredoxin reductase 1. Effects on p53-mediated gene expression and interferon and retinoic acid-induced cell death. J Biol Chem 2002; 277: 22460–22468.
- 150 Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 1999; 274: 35809–35815.
- 151 Moos PJ, Edes K, Cassidy P, Massuda E, Fitzpatrick FA. Electrophilic prostaglandins and lipid aldehydes repress redox-sensitive transcription factors p53 and hypoxia-inducible factor by impairing the selenoprotein thioredoxin reductase. J Biol Chem 2003; 278: 745–750.
- 152 Gladyshev VN, Factor VM, Housseau F, Hatfield DL. Contrasting patterns of regulation of the antioxidant selenoproteins, thioredoxin reductase, and glutathione peroxidase, in cancer cells. Biochem Biophys Res Commun 1998; 251: 488–493.
- 153 Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem 2002; 277: 33249–33257.
- 154 McKeage MJ. Gold opens mitochondrial pathways to apoptosis. Br J Pharmacol 2002; 136: 1081–1082.
- 155 Rigobello MP, Scutari G, Boscolo R, Bindoli A. Induction of mitochondrial permeability transition by auranofin, a Gold(I)-phosphine derivative. Br J Pharmacol 2002; 136: 1162–1168.
- 156 Schallreuter KU, Wood JM. Calcium regulates thioredoxin reductase in human metastatic melanoma. Biochim Biophys Acta 1989; 997: 242–247.
- 157 Schallreuter KU, Pittelkow MR, Gleason FK, Wood JM. The role of calcium in the regulation of free radical reduction by thioredoxin reductase at the surface of the skin. J Inorg Biochem 1986; 28: 227–238.
- 158 Schallreuter KU, Pittelkow MR, Wood JM. EF-hands calcium binding regulates the thioredoxin reductase/thioredoxin electron transfer in human keratinocytes. Biochem Biophys Res Commun 1989; 162: 1311–1316.
- 159 Spyrou G, Holmgren A. Deoxyribonucleoside triphosphate pools and growth of glutathione-depleted 3T6 mouse fibroblasts. Biochem Biophys Res Commun 1996; 220: 42–46.
- 160 Söderberg A, Sahaf B, Rosén A. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: Presence in human plasma. Cancer Res 2000; 60: 2281–2289.
- 161 Rozell B, Hansson HA, Luthman M, Holmgren A. Immunohistochemical localization of thioredoxin and thioredoxin reductase in adult rats. Eur J Cell Biol 1985; 38: 79–86.
- 162 Hansson HA, Rozell B, Stemme S, Engstrom Y, Thelander L, Holmgren A. Different cellular distribution of thioredoxin and subunit M1 of ribonucleotide reductase in rat tissues. Exp Cell Res 1986; 163: 363–369.
- 163 Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein–Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci USA 1990; 87: 8282–8286.
- 164 Biguet C, Wakasugi N, Mishal Z, Holmgren A, Chouaib S, Tursz T, Wakasugi H. Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism. J Biol Chem 1994; 269: 28865–28870.
- 165 Gasdaska JR, Berggren M, Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ 1995; 6: 1643–1650.
- 166 Sahaf B, Söderberg A, Spyrou G, Barral AM, Pekkari K, Holmgren A, Rosén A. Thioredoxin expression and localization in human cell lines: Detection of full-length and truncated species. Exp Cell Res 1997; 236: 181–192.
- 167 Grippo JF, Holmgren A, Pratt WB. Proof that the endogenous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J Biol Chem 1985; 260: 93–97.
- 168 Tienrungroj W, Pratt SE, Grippo JF, Holmgren A, Pratt WB. The heat-stable cytosolic factor that promotes glucocorticoid receptor binding to DNA is neither thioredoxin nor ribonuclease. J Steroid Biochem 1987; 28: 449–457.
- 169 Das AK, Hummel BC, Gleason FK, Holmgren A, Walfish PG. Bacterial and mammalian thioredoxin systems activate iodothyronine 5′-deiodination. Biochem Cell Biol 1988; 66: 460–464.
- 170 Jackson RJ, Campbell EA, Herbert P, Hunt T. The preparation and properties of gel-filtered rabbit-reticulocyte lysate protein-synthesis systems. Eur J Biochem 1983; 131: 289–301.
- 171 Hunt T, Herbert P, Campbell EA, Delidakis C, Jackson RJ. The use of affinity chromatography on 2′5′ ADP-sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur J Biochem 1983; 131: 303–311.
- 172 Ganther H, Ip C. Thioredoxin reductase activity in rat liver is not affected by supranutritional levels of monomethylated selenium in vivo and is inhibited only by high levels of selenium in vitro. J Nutr 2001; 131: 301–304.
- 173 Marcocci L, Flohé L, Packer L. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase. Biofactors 1997; 6: 351–358.
- 174 Hill KE, McCollum GW, Boeglin ME, Burk RF. Thioredoxin reductase activity is decreased by selenium deficiency. Biochem Biophys Res Commun 1997; 234: 293–295.
- 175 Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL, Gladyshev VN. Heterogeneity within animal thioredoxin reductases. Evidence for alternative first exon splicing. J Biol Chem 2001; 276: 3106–3114.
- 176 Miranda-Vizuete A, Spyrou G. Genomic organization and identification of a novel alternative splicing variant of mouse mitochondrial thioredoxin reductase (TrxR2) gene. Mol Cells 2002; 13: 488–492.
- 177 Follmann H, Haberlein I. Thioredoxins: Universal, yet specific thiol-disulfide redox cofactors. Biofactors 1995; 5: 147–156.
- 178 Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, Oko R, Pelto-Huikko M, Spyrou G. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 2001; 276: 31567–31574.
- 179 Sadek CM, Damdimopoulos AE, Pelto-Huikko M, Gustafsson JA, Spyrou G, Miranda-Vizuete A. Sptrx-2, a fusion protein composed of one thioredoxin and three tandemly repeated NDP-kinase domains is expressed in human testis germ cells. Genes Cells 2001; 6: 1077–1090.
- 180 Holmgren A, Luthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 1978; 17: 4071–4077.
- 181 Rigobello MP, Callegaro MT, Barzon E, Benetti M, Bindoli A. Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic Biol Med 1998; 24: 370–376.
- 182 Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem 1999; 261: 405–412.
- 183 Ejima K, Nanri H, Toki N, Kashimura M, Ikeda M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 1999; 20: 95–101.
- 184 Rozell B, Holmgren A, Hansson HA. Ultrastructural demonstration of thioredoxin and thioredoxin reductase in rat hepatocytes. Eur J Cell Biol 1988; 46: 470–477.
- 185 Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 1997; 272: 2936–2941.
- 186 Wollman EE, Kahan A, Fradelizi D. Detection of membrane associated thioredoxin on human cell lines. Biochem Biophys Res Commun 1997; 230: 602–606.
- 187 Chen C, Zhao J, Zhang P, Chai Z. Speciation and subcellular location of se-containing proteins in human liver studied by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection. Anal Bioanal Chem 2002; 372: 426–430.
- 188 Schallreuter KU, Wood JM. The activity and purification of membrane-associated thioredoxin reductase from human metastatic melanotic melanoma. Biochim Biophys Acta 1988; 967: 103–109.
- 189 Preusch PC. Is thioredoxin the physiological vitamin K epoxide reducing agent? FEBS Lett 1992; 305: 257–259.
- 190 Gardill SL, Suttie JW. Vitamin K epoxide and quinone reductase activities. Evidence for reduction by a common enzyme. Biochem Pharmacol 1990; 40: 1055–1061.
- 191 Björnstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 1994; 269: 29382–29384.
- 192 Andersson M, Holmgren A, Spyrou G. NK-lysin, a disulfide-containing effector peptide of T-lymphocytes, is reduced and inactivated by human thioredoxin reductase. Implication for a protective mechanism against NK–lysin cytotoxicity. J Biol Chem 1996; 271: 10116–10120.
- 193 Fuchs J. Validity of the ‘bioassay’ for thioredoxin-reductase activity. Arch Dermatol 1988; 124: 849–851.
- 194 Fuchs J, Mehlhorn RJ, Packer L. Free radical reduction mechanisms in mouse epidermis skin homogenates. J Invest Dermatol 1989; 93: 633–640.
- 195 Gasdaska JR, Gasdaska PY, Gallegos A, Powis G. Human thioredoxin reductase gene localization to chromosomal position 12q23-q24.1 and mRNA distribution in human tissue. Genomics 1996; 37: 257–259.
- 196 Cha MK, Kim IH. Thioredoxin-linked peroxidase from human red blood cell: Evidence for the existence of thioredoxin and thioredoxin reductase in human red blood cell. Biochem Biophys Res Commun 1995; 217: 900–907.
- 197 Aslund F, Berndt KD, Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein–protein redox equilibria. J Biol Chem 1997; 272: 30780–30786.
- 198 Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 2002; 99: 1491–1496.
- 199 Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 1992; 267: 24161–24164.
- 200 Rubartelli A, Sitia R. Interleukin 1β and thioredoxin are secreted through a novel pathway of secretion. Biochem Soc Trans 1991; 19: 255–259.
- 201 Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG. Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med 2001; 30: 412–424.
- 202 Shioji K, Matsuura Y, Iwase T, Kitaguchi S, Nakamura H, Yodoi J, Hashimoto T, Kawai C, Kishimoto C. Successful immunoglobulin treatment for fulminant myocarditis and serial analysis of serum thioredoxin: A case report. Circ J 2002; 66: 977–980.
- 203 Shioji K, Kishimoto C, Nakamura H, Toyokuni S, Nakayama Y, Yodoi J, Sasayama S. Upregulation of thioredoxin (TRX) expression in giant cell myocarditis in rats. FEBS Lett 2000; 472: 109–113.
- 204 Smith AD, South PK, Levander OA. Effect of gold(I) compounds on the virulence of an amyocarditic strain of coxsackievirus B3. Biol Trace Elem Res 2001; 84: 67–80.
- 205 Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG. Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem 1999; 274: 4722–4734.
- 206 Miranda-Vizuete A, Damdimopoulos AE, Spyrou G. cDNA cloning, expression and chromosomal localization of the mouse mitochondrial thioredoxin reductase gene(1). Biochim Biophys Acta 1999; 1447: 113–118.
- 207 Mau BL, Powis G. Inhibition of thioredoxin reductase (E.C. 1.6.4.5.) by antitumor quinones. Free Radic Res Commun 1990; 8: 365–372.
- 208 Mau BL, Powis G. Inhibition of cellular thioredoxin reductase by diaziquone and doxorubicin. Relationship to the inhibition of cell proliferation and decreased ribonucleotide reductase activity. Biochem Pharmacol 1992; 43: 1621–1627.
- 209 Mau BL, Powis G. Mechanism-based inhibition of thioredoxin reductase by antitumor quinoid compounds. Biochem Pharmacol 1992; 43: 1613–1620.
- 210 Gromer S. Die Thioredoxinreduktase von Mensch und Maus - Ein Selenoenzym als Zielmolekül von Chemotherapeutika [MD-Thesis]. Heidelberg: Ruprecht-Karls-Universität - Medical faculty; 1998. 123 p.
- 211 Coudray C, Boucher F, Hida H, Tirard V, Leiris Jd, Favier A. Selenium supplementation decreases the prooxidant and cardiotoxicity effects of adriamycin in the rat. Redox Report 1996; 2: 323–332.
- 212 Go T, Isowa N, Hirata T, Yodoi J, Hitomi S, Wada H. Thymic interdigitating cells express thioredoxin (TRX/ADF): An immunohistochemical study of 82 thymus and thymoma samples. Thymus 1997; 24: 157–171.
- 213 Howie AF, Arthur JR, Nicol F, Walker SW, Beech SG, Beckett GJ. Identification of a 57-kDa selenoprotein in human thyrocytes as thioredoxin reductase and evidence that its expression is regulated through the calcium-phosphoinositol signaling pathway. J Clin Endocrinol Metab 1998; 83: 2052–2058.
- 214 Yanagawa T, Ishikawa T, Ishii T, Tabuchi K, Iwasa S, Bannai S, Omura K, Suzuki H, Yoshida H. Peroxiredoxin I expression in human thyroid tumors. Cancer Lett 1999; 145: 127–132.
- 215 Hansson HA, Holmgren A, Rozell B, Taljedal IB. Immunohistochemical localization of thioredoxin and thioredoxin reductase in mouse exocrine and endocrine pancreas. Cell Tissue Res 1986; 245: 189–195.
- 216 Das KC, Guo XL, White CW. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol 1999; 276: L530–L539.
- 217 Soini Y, Kahlos K, Napankangas U, Kaarteenaho-Wiik R, Saily M, Koistinen P, Paaakko P, Holmgren A, Kinnula VL. Widespread expression of thioredoxin and thioredoxin reductase in non-small cell lung carcinoma. Clin Cancer Res 2001; 7: 1750–1757.
- 218
Kahlos K,
Soini Y,
Saily M,
Koistinen P,
Kakko S,
Paakko P,
Holmgren A,
Kinnula VL.
Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma.
Int J Cancer
2001;
95:
198–204.
10.1002/1097-0215(20010520)95:3<198::AID-IJC1034>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 219 Schütze N, Bachthaler M, Lechner A, Köhrle J, Jakob F. Identification by differential display PCR of the selenoprotein thioredoxin reductase as a 1-α,25(OH)2-vitamin D3-responsive gene in human osteoblasts-regulation by selenite. Biofactors 1998; 7: 299–310.
- 220 Fujii S, Nanbu Y, Konishi I, Mori T, Masutani H, Yodoi J. Immunohistochemical localization of adult T-cell leukaemia-derived factor, a human thioredoxin homologue, in human fetal tissues. Virchows Arch A Pathol Anat Histopathol 1991; 419: 317–326.
- 221 Schallreuter KU, Witkop CJ. Thioredoxin reductase activity in Hermansky-Pudlak syndrome: A method for identification of putative heterozygotes. J Invest Dermatol 1988; 90: 372–377.
- 222 Schallreuter KU, Pittelkow MR. Anthralin inhibits elevated levels of thioredoxin reductase in psoriasis. A new mode of action for this drug. Arch Dermatol 1987; 123: 1494–1498.
- 223 Rafferty TS, McKenzie RC, Hunter JA, Howie AF, Arthur JR, Nicol F, Beckett GJ. Differential expression of selenoproteins by human skin cells and protection by selenium from UVB-radiation-induced cell death. Biochem J 1998; 332: 231–236.
- 224 Clark LC, Combs GF, Jr., Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276: 1957–1963.
- 225 Rundlöf AK, Carlsten M, Giacobini MM, Arnér ES. Prominent expression of the selenoprotein thioredoxin reductase in the medullary rays of the rat kidney and thioredoxin reductase mRNA variants differing at the 5′ untranslated region. Biochem J 2000; 347(Pt 3): 661–668.
- 226 Jamba L, Nehru B, Medina D, Bansal MP, Sinha R. Isolation and identification of selenium-labeled proteins in the mouse kidney. Anticancer Res 1996; 16: 1651–1657.
- 227 Yu Y, Oko R, Miranda-Vizuete A. Developmental expression of spermatid-specific thioredoxin-1 protein: Transient association to the longitudinal columns of the fibrous sheath during sperm tail formation. Biol Reprod 2002; 67: 1546–1554.
- 228 Muro Y, Ogawa Y, Kato Y, Hagiwara M. Autoantibody to thioredoxin reductase in an ovarian cancer patient. Biochem Biophys Res Commun 1998; 242: 267–271.
- 229 Padilla CA, Martinez-Galisteo E, Lopez-Barea J, Holmgren A, Barcena JA. Immunolocalization of thioredoxin and glutaredoxin in mammalian hypophysis. Mol Cell Endocrinol 1992; 85: 1–12.
- 230 Khan IA, Luduena RF. Possible regulation of the in vitro assembly of bovine brain tubulin by the bovine thioredoxin system. Biochim Biophys Acta 1991; 1076: 289–297.
- 231 Sadek CM, Jiménez A, Damdimopoulos AE, Kieselbach T, Nord M, Gustafsson JA, Spyrou G, Davis EC, Oko R, Van Der Hoorn FA,et al. Characterization of human thioredoxin-like 2 (Txl-2): A novel microtubule-binding thioredoxin predominantly expressed in the cilia of lung airway epithelium and spermatid manchette and axoneme. J Biol Chem 2003; 4: 4.
- 232 Arnér ES, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods Enzymol 1999; 300: 226–239.
- 233 Björnstedt M, Kumar S, Holmgren A. Selenite and selenodiglutathione: Reactions with thioredoxin systems. Methods Enzymol 1995; 252: 209–219.
- 234 Arteel GE, Briviba K, Sies H. Function of thioredoxin reductase as a peroxynitrite reductase using selenocystine or ebselen. Chem Res Toxicol 1999; 12: 264–269.
- 235 Gromer S, Wissing J, Behne D, Ashman K, Schirmer RH, Flohé L, Becker K. A hypothesis on the catalytic mechanism of the selenoenzyme thioredoxin reductase. Biochem J 1998; 332: 591–592.
- 236 Zhong L, Arnér ES, Holmgren A. Structure and mechanism of mammalian thioredoxin reductase: The active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci USA 2000; 97: 5854–5859.
- 237 Magnusson CG, Björnstedt M, Holmgren A. Human IgG is substrate for the thioredoxin system: Differential cleavage pattern of interchain disulfide bridges in IgG subclasses. Mol Immunol 1997; 34: 709–717.
- 238 Russel M, Model P, Holmgren A. Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J Bacteriol 1990; 172: 1923–1929.
- 239 Leeming JP, Holland KT, Bojar RA. The in vitro antimicrobial effect of azelaic acid. Br J Dermatol 1986; 115: 551–556.
- 240 Schallreuter KU, Wood JM. Azelaic acid as a competitive inhibitor of thioredoxin reductase in human melanoma cells. Cancer Lett 1987; 36: 297–305.
- 241 Schallreuter KU, Wood JW. A possible mechanism of action for azelaic acid in the human epidermis. Arch Dermatol Res 1990; 282: 168–171.
- 242 Wang PF, Marcinkeviciene J, Williams CH, Jr., Blanchard JS. Thioredoxin reductase-thioredoxin fusion enzyme from Mycobacterium leprae: Comparison with the separately expressed thioredoxin reductase. Biochemistry 1998; 37: 16378–16389.
- 243 Wieles B, van Noort J, Drijfhout JW, Offringa R, Holmgren A, Ottenhoff TH. Purification and functional analysis of the Mycobacterium leprae thioredoxin/thioredoxin reductase hybrid protein. J Biol Chem 1995; 270: 25604–25606.
- 244 Wieles B, van Soolingen D, Holmgren A, Offringa R, Ottenhoff T, Thole J. Unique gene organization of thioredoxin and thioredoxin reductase in Mycobacterium leprae. Mol Microbiol 1995; 16: 921–929.
- 245 Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Müller S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 2002; 277: 25970–25975.
- 246 Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H,et al. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 2000; 33: 616–622.
- 247 Chang KM. The mechanisms of chronicity in hepatitis C virus infection. Gastroenterology 1998; 115: 1015–1018.
- 248 Miyazaki K, Noda N, Okada S, Hagiwara Y, Miyata M, Sakurabayashi I, Yamaguchi N, Sugimura T, Terada M, Wakasugi H. Elevated serum level of thioredoxin in patients with hepatocellular carcinoma. Biotherapy 1998; 11: 277–288.
- 249 Sumida Y, Nakashima T, Yoh T, Furutani M, Hirohama A, Kakisaka Y, Nakajima Y, Ishikawa H, Mitsuyoshi H, Okanoue T,et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol 2003; 38: 32–38.
- 250 Sumida Y, Nakashima T, Yoh T, Kakisaka Y, Nakajima Y, Ishikawa H, Mitsuyoshi H, Okanoue T, Nakamura H, Yodoi J. Serum thioredoxin elucidates the significance of serum ferritin as a marker of oxidative stress in chronic liver diseases. Liver 2001; 21: 295–299.
- 251 Björkhem L, Teclebrhan H, Kesen E, Olsson JM, Eriksson LC, Björnstedt M. Increased levels of cytosolic thioredoxin reductase activity and mRNA in rat liver nodules. J Hepatol 2001; 35: 259–264.
- 252 Bobbio-Pallavicini E, Porta C, Moroni M, Bertulezzi G, Civelli L, Pugliese P, Nastasi G. Epirubicin and etoposide combination chemotherapy to treat hepatocellular carcinoma patients: A phase II study. Eur J Cancer 1997; 33: 1784–1788.
- 253 Federico A, Iodice P, Federico P, Del Rio A, Mellone MC, Catalano G. Effects of selenium and zinc supplementation on nutritional status in patients with cancer of digestive tract. Eur J Clin Nutr 2001; 55: 293–297.
- 254 Sieja K. Protective role of selenium against the toxicity of multi-drug chemotherapy in patients with ovarian cancer. Pharmazie 2000; 55: 958–959.
- 255 Nakamura H, De Rosa S, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Herzenberg LA. Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol 1996; 8: 603–611.
- 256 Van Laer A, Dallalio G, McKenzie SW, Means RT, Jr. Thioredoxin and protein nitro-tyrosine in bone marrow supernatant from patients with human immunodeficiency virus infection. J Investig Med 2002; 50: 10–18.
- 257 Newman GW, Balcewicz-Sablinska MK, Guarnaccia JR, Remold HG, Silberstein DS. Opposing regulatory effects of thioredoxin and eosinophil cytotoxicity-enhancing factor on the development of human immunodeficiency virus 1. J Exp Med 1994; 180: 359–363.
- 258 Masutani H, Naito M, Takahashi K, Hattori T, Koito A, Takatsuki K, Go T, Nakamura H, Fujii S, Yoshida Y,et al. Dysregulation of adult T-cell leukemia-derived factor (ADF)/thioredoxin in HIV infection: Loss of ADF high-producer cells in lymphoid tissues of AIDS patients. AIDS Res Hum Retroviruses 1992; 8: 1707–1715.
- 259 Jareno EJ, Roma J, Romero B, Marin N, Muriach M, Johnsen S, Bosch-Morell F, Marselou L, Romero FJ. Serum malondialdehyde correlates with therapeutic efficiency of high activity antiretroviral therapies (HAART) in HIV-1 infected children. Free Radic Res 2002; 36: 341–344.
- 260 Jaruga P, Jaruga B, Olczak A, Halota W, Olinski R. Oxidative DNA base damage in lymphocytes of HIV-infected drug users. Free Radic Res 1999; 31: 197–200.
- 261 Jareno EJ, Bosch-Morell F, Fernandez-Delgado R, Donat J, Romero FJ. Serum malondialdehyde in HIV seropositive children. Free Radic Biol Med 1998; 24: 503–506.
- 262 Pace GW, Leaf CD. The role of oxidative stress in HIV disease. Free Radic Biol Med 1995; 19: 523–528.
- 263 Richard MJ, Guiraud P, Didier C, Seve M, Flores SC, Favier A. Human immunodeficiency virus type 1 Tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: Consequences on cellular resistance to UV-A radiation. Arch Biochem Biophys 2001; 386: 213–220.
- 264 Gladyshev VN, Stadtman TC, Hatfield DL, Jeang KT. Levels of major selenoproteins in T cells decrease during HIV infection and low molecular mass selenium compounds increase. Proc Natl Acad Sci USA 1999; 96: 835–839.
- 265 Burbano X, Miguez-Burbano MJ, McCollister K, Zhang G, Rodriguez A, Ruiz P, Lecusay R, Shor-Posner G. Impact of a selenium chemoprevention clinical trial on hospital admissions of HIV-infected participants. HIV Clin Trials 2002; 3: 483–491.
- 266 Requena JR, Levine RL. Thioredoxin converts the Syrian hamster (29-231) recombinant prion protein to an insoluble form. Free Radic Biol Med 2001; 30: 141–147.
- 267 Aguzzi A, Montrasio F, Kaeser PS. Prions: Health scare and biological challenge. Nat Rev Mol Cell Biol 2001; 2: 118–126.
- 268 Sinha R, Unni E, Ganther HE, Medina D. Methylseleninic acid, a potent growth inhibitor of synchronized mouse mammary epithelial tumor cells in vitro. Biochem Pharmacol 2001; 61: 311–317.
- 269 Ip C, Thompson HJ, Zhu Z, Ganther HE. In vitro and in vivo studies of methylseleninic acid: Evidence that a monomethylated selenium metabolite is critical for cancer chemo-prevention. Cancer Res 2000; 60: 2882–2886.
- 270 Medina D, Oborn CJ. Differential effects of selenium on the growth of mouse mammary cells in vitro. Cancer Lett 1981; 13: 333–344.
- 271 Ferret PJ, Soum E, Negre O, Wollman EE, Fradelizi D. Protective effect of thioredoxin upon NO-mediated cell injury in THP1 monocytic human cells. Biochem J 2000; 346(Pt 3): 759–765.
- 272 Leippe M. Ancient weapons: NK–lysin, is a mammalian homolog to poreforming peptides of a protozoan parasite. Cell 1995; 83: 17–18.
- 273 Schirmer RH, Schulz GE, Untucht-Grau R. On the geometry of leukocyte NADPH-oxidase, a membrane flavoenzyme. Inferences from the structure of glutathione reductase. FEBS Lett 1983; 154: 1–4.
- 274 Powis G, Oblong JE, Gasdaska PY, Berggren M, Hill SR, Kirkpatrick DL. The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res 1994; 6: 539–544.
- 275 Shao L, Diccianni MB, Tanaka T, Gribi R, Yu AL, Pullen JD, Camitta BM, Yu J. Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication. Cancer Res 2001; 61: 7333–7338.
- 276 Nilsson J, Soderberg O, Nilsson K, Rosen A. Thioredoxin prolongs survival of B-type chronic lymphocytic leukemia cells. Blood 2000; 95: 1420–1426.
- 277 Yamada M, Tomida A, Yoshikawa H, Taketani Y, Tsuruo T. Increased expression of thioredoxin/adult T-cell leukemia-derived factor in cisplatin-resistant human cancer cell lines. Clin Cancer Res 1996; 2: 427–432.
- 278 Wang J, Kobayashi M, Sakurada K, Imamura M, Moriuchi T, Hosokawa M. Possible roles of an adult T-cell leukemia (ATL)-derived factor/thioredoxin in the drug resistance of ATL to adriamycin. Blood 1997; 89: 2480–2487.
- 279 Björkhem-Bergman L, Jönsson K, Eriksson LC, Olsson JM, Lehmann S, Paul C, Björnstedt M. Drug-resistant human lung cancer cells are more sensitive to selenium cytotoxicity. Effects on thioredoxin reductase and glutathione reductase. Biochem Pharmacol 2002; 63: 1875–1884.
- 280 Chen Y, Cai J, Murphy TJ, Jones DP. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem 2002; 277: 33242–33248.
- 281 Zvaifler NJ. Pathogenesis of the joint disease of rheumatoid arthritis. Am J Med 1983; 75: 3–8.
- 282 Saito I, Shimuta M, Terauchi K, Tsubota K, Yodoi J, Miyasaka N. Increased expression of human thioredoxin/adult T cell leukemia-derived factor in Sjögren's syndrome. Arthritis Rheum 1996; 39: 773–782.
- 283 Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, van der Voort EA, Leow A, Versendaal J,et al. Expression of the thioredoxin–thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 1999; 42: 2430–2439.
- 284 Smith AD, Guidry CA, Morris VC, Levander OA. Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr 1999; 129: 194–198.
- 285 Richter J. Effect of auranofin on cytokine induced secretion of granule proteins from adherent human neutrophils in vitro. Ann Rheum Dis 1991; 50: 372–375.
- 286 Miller S, Walker SW, Arthur JR, Lewin MH, Pickard K, Nicol F, Howie AF, Beckett GJ. Selenoprotein expression in endothelial cells from different human vasculature and species. Biochim Biophys Acta 2002; 1588: 85–93.
- 287 Anema SM, Walker SW, Howie AF, Arthur JR, Nicol F, Beckett GJ. Thioredoxin reductase is the major selenoprotein expressed in human umbilicalvein endothelial cells and is regulated by protein kinase C. Biochem J 1999; 342: 111–117.
- 288 Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N, Kikuchi H, Yodoi J. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest 1998; 78: 957–966.
- 289 Yokomise H, Fukuse T, Hirata T, Ohkubo K, Go T, Muro K, Yagi K, Inui K, Hitomi S, Mitsui A,et al. Effect of recombinant human adult T cell leukemia-derived factor on rat lung reperfusion injury. Respiration 1994; 61: 99–104.
- 290 Yagi K, Liu C, Bando T, Yokomise H, Inui K, Hitomi S, Wada H. Inhibition of reperfusion injury by human thioredoxin (adult T-cell leukemia-derived factor) in canine lung transplantation. J Thorac Cardiovasc Surg 1994; 108: 913–921.
- 291 Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, Ban T. Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 1996; 27: 727–732.
- 292
Isowa N,
Yoshimura T,
Kosaka S,
Liu M,
Hitomi S,
Yodoi J,
Wada H.
Human thioredoxin attenuates hypoxia-reoxygenation injury of murine endothelial cells in a thiol-free condition.
J Cell Physiol
2000;
182:
33–40.
10.1002/(SICI)1097-4652(200001)182:1<33::AID-JCP4>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 293 Gromer S, Merkle H, Schirmer RH, Becker K. Human placenta thioredoxin reductase: Preparation and inhibitor studies. Methods Enzymol 2002; 347: 382–394.
- 294 Engman L, Cotgreave I, Angulo M, Taylor CW, Paine-Murrieta GD, Powis G. Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res 1997; 17: 4599–4605.
- 295 Oblong JE, Chantler EL, Gallegos A, Kirkpatrick DL, Chen T, Marshall N, Powis G. Reversible inhibition of human thioredoxin reductase activity by cytotoxic alkyl 2-imidazolyl disulfide analogues. Cancer Chemother Pharmacol 1994; 34: 434–438.
- 296 Kirkpatrick DL, Kuperus M, Dowdeswell M, Potier N, Donald LJ, Kunkel M, Berggren M, Angulo M, Powis G. Mechanisms of inhibition of the thioredoxin growth factor system by antitumor 2-imidazolyl disulfides. Biochem Pharmacol 1998; 55: 987–994.
- 297 Kirkpatrick DL, Watson S, Kunkel M, Fletcher S, Ulhaq S, Powis G. Parallel syntheses of disulfide inhibitors of the thioredoxin redox system as potential antitumor agents. Anticancer Drug Des 1999; 14: 421–432.
- 298 Wipf P, Hopkins TD, Jung JK, Rodriguez S, Birmingham A, Southwick EC, Lazo JS, Powis G. New inhibitors of the thioredoxin–thioredoxin reductase system based on a naphthoquinone spiroketal natural product lead. Bioorg Med Chem Lett 2001; 11: 2637–2641.
- 299 Kunkel MW, Kirkpatrick DL, Johnson JI, Powis G. Cell line-directed screening assay for inhibitors of thioredoxin reductase signaling as potential anti-cancer drugs. Anticancer Drug Des 1997; 12: 659–670.
- 300 Stahl W, Krauth-Siegel RL, Schirmer RH, Eisenbrand G. A method to determine the carbamoylating potential of 1-(2-chloroethyl)-1-nitrosoureas. IARC Sci Publ 1987; 84: 191–193.
- 301 Karplus PA, Krauth-Siegel RL, Schirmer RH, Schulz GE. Inhibition of human glutathione reductase by the nitrosourea drugs 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea. A crystallographic analysis. Eur J Biochem 1988; 171: 193–198.
- 302 Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur J Biochem 1989; 180: 267–272.
- 303 Schallreuter KU, Gleason FK, Wood JM. The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase, and ribonucleotide reductase. Biochim Biophys Acta 1990; 1054: 14–20.
- 304 Babson JR, Reed DJ. Inactivation of glutathione reductase by 2-chloroethyl nitrosourea-derived isocyanates. Biochem Biophys Res Commun 1978; 83: 754–762.
- 305 Foye WO, Lemke TL, Williams DA. Gold compounds. Principles of medicinal chemistry, 4th edn. Baltimore: Williams & Wilkins; 1995. 571 p.
- 306 Chaudière J, Tappel AL. Interaction of gold(I) with the active site of selenium–glutathione peroxidase. J Inorg Biochem 1984; 20: 313–325.
- 307 Berry MJ, Kieffer JD, Harney JW, Larsen PR. Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. J Biol Chem 1991; 266: 14155–14158.
- 308 Hill KE, McCollum GW, Burk RF. Determination of thioredoxin reductase activity in rat liver supernatant. Anal Biochem 1997; 253: 123–125.
- 309 Simon TM, Kunishima DH, Vibert GJ, Lorber A. Screening trial with the coordinated gold compound auranofin using mouse lymphocyte leukemia P388. Cancer Res 1981; 41: 94–97.
- 310 Mirabelli CK, Johnson RK, Sung CM, Faucette L, Muirhead K, Crooke ST. Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res 1985; 45: 32–39.
- 311 Sasada T, Nakamura H, Ueda S, Sato N, Kitaoka Y, Gon Y, Takabayashi A, Spyrou G, Holmgren A, Yodoi J. Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic Biol Med 1999; 27: 504–514.
- 312 Arnér ES, Nakamura H, Sasada T, Yodoi J, Holmgren A, Spyrou G. Analysis of the inhibition of mammalian thioredoxin, thioredoxin reductase, and glutaredoxin by cis-diamminedichloroplatinum (II) and its major metabolite, the glutathione–platinum complex. Free Radic Biol Med 2001; 31: 1170–1178.
- 313 Anestal K, Arnér ES. Rapid induction of cell death by selenium compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. J Biol Chem 2003; 6: 6.
- 314 Jennette KW, Lippard SJ, Vassiliades GA, Bauer WR. Metallointercalation reagents. 2-Hydroxyethanethiolato(2,2′,2′-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. Proc Natl Acad Sci USA 1974; 71: 3839–3843.
- 315 Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL. (2,2′:6′,2″-Terpyridine)platinum(II) complexes are irreversible inhibitors of Trypanosoma cruzi trypanothione reductase but not of human glutathione reductase. J Med Chem 2000; 43: 4812–4821.
- 316 Becker K, Herold-Mende C, Park JJ, Lowe G, Schirmer RH. Human thioredoxin reductase is efficiently inhibited by (2,2′:6′,2″-terpyridine)platinum(II) complexes. Possible implications for a novel antitumor strategy. J Med Chem 2001; 44: 2784–2792.
- 317 Arnér ES, Björnstedt M, Holmgren A. 1-Chloro-2,4-dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase. Loss of thioredoxin disulfide reductase activity is accompanied by a large increase in NADPH oxidase activity. J Biol Chem 1995; 270: 3479–3482.
- 318 Arnér ES. Superoxide production by dinitrophenyl-derivatized thioredoxin reductase—A model for the mechanism and correlation to immunostimulation by dinitrohalobenzenes. Biofactors 1999; 10: 219–226.
- 319 Schirmer RH, Müller JG, Krauth-Siegel RL. Disulfide-reductase inhibitors as chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria. Angew Chem Int Ed Engl 1995; 34: 141–154.
- 320 Nordberg J, Zhong L, Holmgren A, Arnér ES. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J Biol Chem 1998; 273: 10835–10842.
- 321 Bilzer M, Krauth-Siegel RL, Schirmer RH, Akerboom TP, Sies H, Schulz GE. Interaction of a glutathione S-conjugate with glutathione reductase. Kinetic and X-ray crystallographic studies. Eur J Biochem 1984; 138: 373–378.
- 322 Trcka J, Kampgen E, Becker JC, Schwaaf A, Brocker EB. Immunochemotherapy of malignant melanoma. Epifocal administration of dinitrochlorobenzene (DNCB) combined with systemic chemotherapy with dacarbazine (DTIC). Hautarzt 1998; 49: 17–22.
- 323 Pai EF, Schulz GE. The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J Biol Chem 1983; 258: 1752–1757.
- 324 Engman L, Kandra T, Gallegos A, Williams R, Powis G. Water-soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells. Anticancer Drug Des 2000; 15: 323–330.
- 325 Powis G, Gasdaska JR, Gasdaska PY, Berggren M, Kirkpatrick DL, Engman L, Cotgreave IA, Angulo M, Baker A. Selenium and the thioredoxin redox system: Effects on cell growth and death. Oncol Res 1997; 9: 303–312.
- 326 Krauth-Siegel RL, Schirmer RH, Ghisla S. FAD analogues as prosthetic groups of human glutathione reductase. Properties of the modified enzyme species and comparisons with the active site structure. Eur J Biochem 1985; 148: 335–344.
- 327 Schönleben-Janas A, Kirsch P, Mittl PR, Schirmer RH, Krauth-Siegel RL. Inhibition of human glutathione reductase by 10-arylisoalloxazines: Crystalline, kinetic, and electro-chemical studies. J Med Chem 1996; 39: 1549–1554.
- 328 Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G. Three-dimensional structure of a mammalian thioredoxin reductase: Implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc Natl Acad Sci USA 2001; 98: 9533–9538.
- 329 Dessolin J, Biot C, Davioud-Charvet E. Bromination studies of the 2,3-dimethylnaphthazarin core allowing easy access to naphthazarin derivatives. J Org Chem 2001; 66: 5616–5619.
- 330 Irmler A, Bechthold E, Davioud-Charvet E, Hofmann V, Réau R, Gromer S, Schirmer RH, Becker K. Disulfide reductases—Current developments. Flavins and Flavoproteins 2002; 14: 803–815.
- 331 Lin S, Cullen WR, Thomas DJ. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 1999; 12: 924–930.
- 332 U-Taniguchi Y, Furuke K, Masutani H, Nakamura H, Yodoi J. Cell cycle inhibition of HTLV-I transformed T cell lines by retinoic acid: The possible therapeutic use of thioredoxin reductase inhibitors. Oncol Res 1995; 7: 183–189.
- 333 Schallreuter KU, Grebe T, Pittelkow MR, Wood JM. [3H]-13-cis-retinoic acid covalently binds to thioredoxin reductase in human keratinocytes. Skin Pharmacol 1991; 4: 14–20.
- 334 Schallreuter KU, Wood JM. The stereospecific suicide inhibition of human melanoma thioredoxin reductase by 13-cis-retinoic acid. Biochem Biophys Res Commun 1989; 160: 573–579.
- 335 Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988; 85: 2444–2448.
- 336 Brown DM, Upcroft JA, Upcroft P. A thioredoxin reductase-class of disulphide reductase in the protozoan parasite Giardia duodenalis. Mol Biochem Parasitol 1996; 83: 211–220.
- 337 Oblong JE, Gasdaska PY, Sherrill K, Powis G. Purification of human thioredoxin reductase: Properties and characterization by absorption and circular dichroism spectroscopy. Biochemistry 1993; 32: 7271–7277.
- 338 Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem 1977; 252: 4600–4606.
- 339 Prongay AJ, Williams CH, Jr. Oxidation–reduction properties of Escherichia coli thioredoxin reductase altered at each active site cysteine residue. J Biol Chem 1992; 267: 25181–25188.
- 340 Gasdaska PY, Berggren MM, Berry MJ, Powis G. Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett 1999; 442: 105–111.
- 341 Heppell-Parton A, Cahn A, Bench A, Lowe N, Lehrach H, Zehetner G, Rabbitts P. Thioredoxin, a mediator of growth inhibition, maps to 9q31. Genomics 1995; 26: 379–381.
- 342 Minard KI, Jennings GT, Loftus TM, Xuan D, McAlister-Henn L. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae. J Biol Chem 1998; 273: 31486–31493.
- 343 Andersen JF, Sanders DA, Gasdaska JR, Weichsel A, Powis G, Montfort WR. Human thioredoxin homodimers: Regulation by pH, role of aspartate 60, and crystal structure of the aspartate 60→asparagine mutant. Biochemistry 1997; 36: 13979–13988.
- 344 Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol 1992; 228: 1177–1192.
- 345 Lennon BW, Williams CJ. Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: Insights for catalysis. Biochemistry 1996; 35: 4704–4712.
- 346 Wang PF, Veine DM, Ahn SH, Williams CH, Jr. A stable mixed disulfide between thioredoxin reductase and its substrate, thioredoxin: Preparation and characterization. Biochemistry 1996; 35: 4812–4819.
- 347 Veine DM, Ohnishi K, Williams CH, Jr. Thioredoxin reductase from Escherichia coli: Evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein Sci 1998; 7: 369–375.
- 348 Silberstein DS, McDonough S, Minkoff MS, Balcewicz-Sablinska MK. Human eosinophil cytotoxicity-enhancing factor. Eosinophil-stimulating and dithiol reductase activities of biosynthetic (recombinant) species with COOH-terminal deletions. J Biol Chem 1993; 268: 9138–9142.
- 349 Becker K, Schirmer RH. 1,3-Bis(2-chloroethyl)-1-nitrosourea as thiol-carbamoylating agent in biological systems. Methods Enzymol 1995; 251: 173–188.
- 350 Berry MJ, Kieffer JD, Larsen PR. Evidence that cysteine, not selenocysteine, is in the catalytic site of type II iodothyronine deiodinase. Endocrinology 1991; 129: 550–552.
- 351 Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr., Schirmer RH. Amer ESJ Active sites of thioredoxin reductases—Why selenoproteins? Proc Natl Acad Sci USA, accepted for publication.
- 352 Bauer H, Gromer S, Urbani A, Schnölzer M, Schirmer RH, Müller HM. Thioredoxin reductase from the malaria mosquito Anopheles gambiae—Comparisons with the orthologous enzymes of Plasmodium falciparum and the human host. Eur J Biochem, accepted for publication.
- 353 Bauer H, Massey V, Arscott LD, Schirmer RH, Ballou DP, Willams CH Jr. The mechanism of high Mr thioredoxin Reductase from Drosophila melanogaster. J Biol Chem 2003; 278: 33020–33028.